• 제목/요약/키워드: $\beta$-catenin

검색결과 267건 처리시간 0.022초

백혈병세포주 Jurkat의 세포주기 억제에 미치는 합환피(Albizzia julibrissin) 물 추출물의 효과 (Effect of the Water Extract of Albizzia julibrissin on Cell Cycle Progression in the Human Leukemic Jurkat Cells)

  • 황상구;이형철;김대근;안원근;전병훈
    • 생약학회지
    • /
    • 제33권1호통권128호
    • /
    • pp.29-34
    • /
    • 2002
  • Albizzia julibrissin belonging to the family Leguminosae has been used for the treatment of contusion, sore throat, amnesia, and insomnia in Oriental traditional medicine. The water extract of A. julibrissin induced apoptosis in Jurkat T-acute lymphoblastic leukemia (ALL) cells as measured by cell morphology. The capability of this herb medicine to induce apoptosis was associated with proteolytic cleavage of specific target protein such as beta-catenin protein suggesting the possible involvement of caspases. The purpose of the present study is also to investigate the effect of A. julibrissin on cell cycle progression. Our results showed that GI checkpoint related gene products (cyclin D1, cyclin dependent kinase 4, retinoblastoma, E2F1) were decreased in their protein levels in a dose-dependent manners after treatment of the extract. These results indicate that the increase of apoptotic cell death by A. julibrissin may be due to the inhibition of cell cycle progression in wild type p53-lacking Jurkat cells.

An Arabidopsis Homologue of Human Seven-in-Absentia-interacting Protein Is Involved in Pathogen Resistance

  • Kim, Youn-Sung;Ham, Byung-Kook;Paek, Kyung-Hee;Park, Chung-Mo;Chua, Nam-Hai
    • Molecules and Cells
    • /
    • 제21권3호
    • /
    • pp.389-394
    • /
    • 2006
  • Human seven-in-absentia (SIAH)-interacting protein (SIP) is a component of the E3 ligase complex targeting beta-catenin for destruction. Arabidopsis has one SIP protein (AtSIP) with 32% amino acid sequence identity to SIP. To investigate the functions of AtSIP, we isolated an atsip knockout mutant, and generated transgenic plants overexpressing AtSIP. The growth rates and morphologies of the atsip and transgenic plants were indistinguishable from those of wild type. However, atsip plants were more susceptible to Pseudomonas syringae infection, and the transgenic plants overexpressing AtSIP were more resistant. Consistent with this, RNA blot analysis showed that the AtSIP gene is strongly induced by wounding and hydrogen peroxide treatment. In addition, when plants were infected with P. syringae, AtSIP was transiently induced prior to PR-1 induction. These observations show that Arabidopsis AtSIP plays a role in resistance to pathogenic infection.

PROTECTION EFFECT OF GINSENG EXTRACT AGAINST APOPTOTIC CELL DEATH INDUCED BY 2,2,5,5-TETRACHLOROBIPHENYL IN NEURONAL SK-N-MC CELLS

  • Lee, Ji-Young;Kim, Jae-Won;Song, Ji-Eun;Kim, Soo-Jung;Chung, Weon-Gu;Kim, Yong-Hoon;Lee, Bo-Ram;Kim, Jin-Hee;Choi, Young-Keun;Joo, Woo-Hong;Cho, Yong-Kweon;Moon, Ja-Young
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.112-112
    • /
    • 2001
  • Oxidative stress plays an important role in the pathological process of neurodegenerative diseases. Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants, some of which may be neurotoxic. Our previous studies showed that 2,2',5,5'-TetracWorobiphenyl (PCB 52) induced apoptotic death in human neuronal SK-N-MC cells, which was demonstrated on gel electrophoresis by visualization of the proteolytic cleavages of $\beta$-catenin and poly (ADP-ribose) polymerase (PARP) and of the production of characteristic ladder patterns of DNA fragmentation.

  • PDF

위암에서 새로운 종양원인 유전자 Nemo-like Kinase의 발현 증가 (The Overexpression of Oncogenic Nemo-like Kinase in Gastric Cancer)

  • 김민규;정광화;남석우
    • 약학회지
    • /
    • 제56권6호
    • /
    • pp.358-363
    • /
    • 2012
  • Nemo-like kinase (NLK), an evolutionarily conserved serine/threonine protein kinase, plays an important role in wide variety of developmental events. NLK phosphorylates T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional complex and suppresses wnt signaling pathway through inhibition of ${\beta}$-catenin/TCF complex interaction. However, the function of NLK in gastric carcinogenesis has not been investigated. In the present study, we have examined whether the NLK gene is involved in the development and/or progression of gastric cancers. NLK expression was analyzed by immunohistochemical staining in 153 advanced gastric cancer specimens. Immunhistochemical analysis showed increased expression of NLK in 91 (59.5%) out of 153 gastric cancer specimens. Statistically, there was no significant relationship between altered expression of NLK protein and clinicopathological parameters, including tumor differentiation, location, lymph node metastasis. We identified that mRNA and protein expression of NLK was significantly up-regulated in human gastric cancer tissues compare to corresponding normal gastric tissues. In addition, we found that human gastric cancer cell lines exhibited relatively high expression of NLK, as compared with normal gastric cells. The results of this study suggest that aberrant regulation of NLK may contribute to the development or progression of gastric cancers and serve as a potential biomarker for advanced gastric cancer patients.

An integrated review on new targets in the treatment of neuropathic pain

  • Khangura, Ravneet Kaur;Sharma, Jasmine;Bali, Anjana;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권1호
    • /
    • pp.1-20
    • /
    • 2019
  • Neuropathic pain is a complex chronic pain state caused by the dysfunction of somatosensory nervous system, and it affects the millions of people worldwide. At present, there are very few medical treatments available for neuropathic pain management and the intolerable side effects of medications may further worsen the symptoms. Despite the presence of profound knowledge that delineates the pathophysiology and mechanisms leading to neuropathic pain, the unmet clinical needs demand more research in this field that would ultimately assist to ameliorate the pain conditions. Efforts are being made globally to explore and understand the basic molecular mechanisms responsible for somatosensory dysfunction in preclinical pain models. The present review highlights some of the novel molecular targets like D-amino acid oxidase, endoplasmic reticulum stress receptors, sigma receptors, hyperpolarization-activated cyclic nucleotide-gated cation channels, histone deacetylase, $Wnt/{\beta}-catenin$ and Wnt/Ryk, ephrins and Eph receptor tyrosine kinase, Cdh-1 and mitochondrial ATPase that are implicated in the induction of neuropathic pain. Studies conducted on the different animal models and observed results have been summarized with an aim to facilitate the efforts made in the drug discovery. The diligent analysis and exploitation of these targets may help in the identification of some promising therapies that can better manage neuropathic pain and improve the health of patients.

어성초(魚腥草)의 항산화 효능 확인 및 모유두 세포의 5α-reductase 유전자 발현에 미치는 영향 (Investigation of Antioxidant Activity of Houttuyniae Herba and its Effect on 5α-reductase Gene Expression in Dermal Papilla Cells)

  • 조남준;이병권;이웅희;김기광;한효상
    • 동의생리병리학회지
    • /
    • 제31권6호
    • /
    • pp.356-361
    • /
    • 2017
  • Houttuyniae Herba is widely used as a cosmetic for enhancing hair growth, and study on promoting mouse hair growth has also been reported. However, studies on the effects of the Houttuyniae Herba on dermal papilla (DP) cells, which play an important role in hair growth, are not well known. For this reason, we studied the effect of Houttuyniae Herba on DP cells. The strong antioxidant activity of Houttuyniae Herba was confirmed by ABTS assay. In the MTS assay, cell viability was reduced to 94.5% in DP cells by treatment of 2 mg/ml concentration of Houttuyniae Herb and cytotoxicity was not observed at 1 mg/ml concentration. The mRNA expression levels of Bone morphogenetic pretein (BMP6), fibroblast growth factor 7 (FGF7), FGF10, and ${\beta}$-galactosidase genes, which are involved in hair growth cycle and hair loss induction, were measured by quantitative RT-PCR after Houttuyniae Herbtreatment. Houttuyniae Herb did not significantly affect mRNA expression of BMP6, FGF7, FGF10, and ${\beta}$-catenin, which are important factors for regulating the hair cycle, including type 1 $5{\alpha}$-reductase. However, mRNA expression of type 2 $5{\alpha}$-reductase, the major cause of male hair loss, was significantly reduced to 56.1% by treatment of Houttuyniae Herbtreatment. Taken together, these results suggest that the Houttuyniae Herbtreatment can help to treat lair loss through removing free radicals and suppression of the expression level of type 2 $5{\alpha}$-reductase in DP cells.

Hinokitiol에 의해 유도된 Autophagy 및 Apoptosis에 의한 대체 항암요법 연구 (Can Hinokitiol Kill Cancer Cells? Alternative Therapeutic Anticancer Agent via Autophagy and Apoptosis)

  • 이태복;전진현
    • 대한임상검사과학회지
    • /
    • 제51권2호
    • /
    • pp.221-234
    • /
    • 2019
  • 암은 유전적, 대사질환적 그리고 감염성 질환 등에 의해 유발되는 생명을 위협하는 심각한 질환으로서, 세포의 성장이 정상적으로 통제되지 않으며, 공격적인 형태로 주변의 조직이나 장기로 침범하는 경향을 보이는 생명을 심각하게 위협하는 질병이다. 지난 수십 년 간, 인류의 건강을 위협하는 암을 정복하기 위한 지속적인 노력이 있었고, 암 신생 기전 및 항암제 연구가 항암제 내성에 대한 연구와 함께 다양한 연구주제로 다루어져 왔다. Hinokitiol (${\beta}$-thujaplicin)은 측백나무과 편백속에 속하는 나무에서 분비되는 terpenoid 물질로서, 항염증작용, 항균작용 및 몇몇 암세포 주에서 autophagy를 통한 항암효과가 있는 것으로 잘 알려져 있다. 본 연구에서는, hinokitiol이 세포 영양상태의 변화유무에 관계없이, transcription factor EB (TFEB)의 핵으로의 이동을 촉진한다는 것을 확인하였다. TFEB의 핵으로의 이동은 autophagy 및 lysosome관련 유전자의 발현을 촉진시키고, 세포질 내에 증가된 autosome과 lysosomal puncta의 관찰을 가능하게 하였다. Hinokitiol를 HCC827세포에 처리한 경우에서, 세포 내 autophagy의 증가와 더불어, mitochondria의 hyper-fragmentation과 mitochondria의 authophagic degradation (mitophagy)가 함께 증가되는 것이 관찰되었다. Hinokitiol은 자궁경부암 세포주인 HeLa세포와 비소세포 폐암 세포주인 HCC827에서 암세포 특이 독성을 나타내었다. 더욱이, TFEB 과발현을 통해 autophagy를 인위적으로 증가시킨 HeLa 세포에서 hinokitiol에 대한 세포독성은 더욱 강화된 것으로 나타났다. 이러한 결과들을 통해, hinokitiol은 TFEB의 핵으로의 이동을 촉발시키는 강력한 autophagy inducer임을 확인할 수 있었다. 본 연구에서 처음으로 확인된 hinokitiol에 의한 TFEB의 활성화 및 비소세포성 암세포에서 항암효과의 상승작용은 다양한 항암제 저항성 세포들에 대한 새로운 치료법 및 대체요법 개발과 관련된 의미 있는 결과로 향후, 분자수준의 작용기작에 대한 추가적인 연구가 수행되어야 할 것으로 사료된다.

인체 혈구암세포에 대한 단선탕(丹仙湯) 추출물의 증식억제 및 세포사멸 유도에 관한 연구 (Anti-proliferative and Pro-apoptic Effects of Dan-Seon-Tang in Human Leukemia Cells)

  • 김성환;박상은;홍상훈
    • 대한한방내과학회지
    • /
    • 제32권4호
    • /
    • pp.565-583
    • /
    • 2011
  • Objectives : This study investigated the biochemical mechanisms of anti-proliferative and pro-apoptotic effects of the water extract of Dan-Seon-Tang (DST) in human leukemia U937 cells. Methods : U937 cells were exposed to DST and growth inhibition was measured by MTT assay. Results : Exposure of U937 cells to DST resulted in the growth inhibition in a concentration-dependent manner. This inhibitory effect was associated with morphological changes and apoptotic cell death such as formation of apoptotic bodies, increased populations of apoptotic-sub G1 phase and induction of DNA fragmentation. The induction of apoptotic cell death in U937 cells by DST was associated with up-regulation of death receptor 4 (DR4) and down-regulation of Bid, surviving and cellular inhibition of apoptosis protein-2 (cIAP-2) expression. DST treatment also induced the proteolytic activation of caspase-3, caspase-8 and caspase-9, and a concomitant degradation of caspase-3 substrate proteins such as poly (ADP-ribose) polymerase (PARP), phospholipase (PLC)-${\gamma}1$, ${\beta}$-catenin and DNA fragmentation factor 45/inhibotor of caspase activated DNAse (DFF45/ICAD). Furthermore, apoptotic cell death by DST was significantly inhibited by caspase-3 specific inhibitor z-DEVD-fmk, demonstrating the important role of caspase-3. Conclusions : These findings suggest that herb prescription DST may be a potential chemotherapeutic agent for the control of human leukemia U937 cells; further study is needed to identify the active compounds.

약침용 봉독성분 melittin의 영향에 의한 인체 폐암세포의 apoptosis 유도 (Melittin-induced Aapoptosis is Associated with Inhibition of COX-2 and hTERT Expression in Human Lung Carcinoma A549 Cells)

  • 안창범;임춘우;윤현민;박수진;최영현
    • Journal of Acupuncture Research
    • /
    • 제20권5호
    • /
    • pp.93-106
    • /
    • 2003
  • Objective : To investigate the possible molecular mechanism(s) of melittin as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Methods: MTT, morphological changes, DAPI staining, Western blot, RT-PCR and in vitro prostaglandin E2 (PGE2) accumulation assays were performed. Results: The anti-proliferative effect by melittin treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. Melittin induced apoptotic cell death in a concentration-dependent manner, which was associated with inhibition or degradation of apoptotic target proteins such as ${\beta}$-catenin, poly(ADP-ribose) polymerase(PARP) and phospholipase $C-{\gamma}1(PLC-{\gamma}1)$. Melittin treatment inhibited the expression of cyclooxygenase-2(COX-2) and accumulation of PGE2 in aconcentration-dependent fashion. In addition, Melittin treatment induced the down-regulation of telomerase reverse transcriptase(hTERT) and proto-oncogene c-myc expression of A549 cells. Conclusions: Taken together, these findings suggest that melittin-induced inhibition of human lung cancer cell proliferation is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and melittin may have therapeutic potential in human lung cancer.

  • PDF

A549 인체 폐암세포에서 piceatannol에 의한 apoptosis 유발과 NO 생성의 억제 (Induction of Apoptosis and Inhibition of NO Production by Piceatannol in Human Lung Cancer A549 Cells)

  • 최영현
    • 생명과학회지
    • /
    • 제22권6호
    • /
    • pp.815-822
    • /
    • 2012
  • Resveratrol 유도체의 일종으로 stilbene계열 물질인 piceatannol은 암세포의 증식을 억제하고 apoptosis를 유발하는 것으로 알려져 있다. 본 연구에서는 A549 인체 폐암세포를 대상으로 piceatannol에 의한 암세포 증식억제와 연관된 부가적인 기전연구를 실시하였다. 본 연구의 결과에서 piceatannol이 A549 세포에서 extrinsic 및 intrinsic pathway의 동시 활성을 통하여 apoptosis를 유발하였음을 Fas/FasL의 발현 증가와 caspase-8 및 -9의 활성증가로 확인하였다. 또한 piceatannol은 caspase-3의 활성을 증가시켰으며, caspase-3의 다양한 표적 단백질들의 발현 감소가 동반되었다. 아울러 piceatannol에 의한 apoptosis 유발 과정은 iNOS의 발현 감소에 의한 NO의 생성 억제와도 연관성이 있었다.