• 제목/요약/키워드: $\beta$-SiAlON

Search Result 142, Processing Time 0.03 seconds

Preparation of β-SiAlON Powder by Combustion Reaction in the System of Si-Al-SiO2-NH4F(β-Si3N4) (Si-Al-SiO2-NH4F(β-Si3N4)계에서 연소반응에 의한 β-SiAlON분말의 제조)

  • Min, Hyun-Hong;Shin, Chang-Yun;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.595-600
    • /
    • 2006
  • The preparation of $\beta$-SiAlON powder by SHS in the system of $Si-Al-SiO_2-NH_4F(\beta-Si_3N_4)$ was investigated in this study. In the preparation of SiAlON powder, the effect of gas pressure, compositions such as Si, $NH_4F$, \beta-Si_3N_4$ and additive in mixture on the reactivity were investigated. At 50 atm of the initial inert gas pressure in reactor, the optimum composition for the preparation of pure $\beta$-SiAlON was $3Si+Al+2SiO_2+NH_4F$. The $\beta$-SiAlON powder synthesized in this condition was a single phase $\beta$-SiAlON with a rod like morphology.

Formation and Microstructure Characteristics of $\beta-Al_5FeSi$ Intermetallic Compound in the Al-Si-Cu Alloys with the Variation of Fe Content (Al-Si-Cu합금에서 Fe 함량에 따른 $\beta-Al_5FeSi$ 금속간화합물의 형성 및 응고미세조직 특성)

  • Kim, Bong-Hwan;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.225-232
    • /
    • 2009
  • For comprehensive understanding of the formation behavior of $\beta-Al_5FeSi$ phase in Al-Si-Cu alloys with the existence of Fe element, microstructure characterizations were performed using combined analysis of OM, SEM-EDS, XRD. Especially, experimental and predictive works on solidification events of $\beta-Al_5FeSi$ phase as well as other phases formed together with $\beta-Al_5FeSi$ have been carried out by using DSC analysis and Java-based Materials Properties software (J. Mat. Pro.). Primary and eutectic $\beta-Al_5FeSi$ phases were able to distinguish from each other on microstructures by their morphological features. Primary $\beta-Al_5FeSi$ phase was seen to have rough surface perpendicular to growth direction, indicating free attachment of solute atoms in liquid state. On the other hand, the eutectic $\beta-Al_5FeSi$ phase was formed with plain and straight surface during eutectic reaction together with $\alpha$-Al phase. The eutectic reaction of $\beta-Al_5FeSi$ and $\alpha$-Al phases was seen to be able to separate into each formation depending on cooling rate.

Effect of Fe, Mn Content on the Tensile Property of Al-4 wt%Mg-0.9 wt%Si Alloy System for High Pressure Die Casting (고압 금형 주조용 Al-4 wt%Mg-0.9 wt%Si계 합금의 인장특성에 미치는 Fe, Mn함량의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.103-112
    • /
    • 2013
  • Effect of Fe and Mn contents on the tensile properties of Al-4 wt%Mg-0.9 wt%Si alloy system has been studied. Common phases of Al-4 wt%Mg-0.9 wt%Si alloy system were ${\alpha}$-Al, $Mg_2Si$, ${\alpha}-Al_{12}(Fe,Mn)_3Si$ and ${\beta}-Al_5FeSi$. As Fe content of Al-4 wt%Mg-0.9 wt%Si alloy system increased from 0.15 wt% to above 0.3 wt%, ${\beta}-Al_5FeSi$ compound appeared. When Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, morphology of plate shaped ${\beta}-Al_5FeSi$ compound changed to chinese script ${\alpha}-Al_{12}(Fe,Mn)_3Si$. As Fe content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Mn alloy increased from 0.15 wt% to 0.4 wt%, tensile strength of the as-cast alloy decreased from 191 MPa to 183 MPa and, elongation of the alloy also decreased from 8.0% to 6.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with low Mn/Fe ratio of the alloy. However, when Mn content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Fe alloy increased from 0.3 wt% to 0.5 wt%, tensile strength of as-cast alloy increased from 181 MPa to 194 MPa and, elongation of the alloy increased from 6.8% to 7.0%. These improvements attribute to the morphology change from ${\beta}-Al_5FeSi$ phase to chinese script, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ phase shape-modified from with high Mn/Fe ratio of the alloy.

Microstructure Formation and mechanical Properties of $\alpha$-$\beta$ ($\alpha$-$\beta$ SiAlON의 미세구조 형성과 특성)

  • 최민호;김득중
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.169-176
    • /
    • 1996
  • The specimens which were prepared from $\alpha$-Si3N4 with additions of YAG(3Y2O3.5Al2O3)-10 wt% and various AlN contents were sintered in N2 atmosphere at 1$700^{\circ}C$ The effect of $\alpha$,$\beta$-solid solution contents and sintering time on mechanical properties were investigated. As the content of $\beta$-solid solution and sintering time increased the hardness is reduced but the hardness of specimen sintered over 10 hours is constant irrespective of sintering time. While the fracture toughness increased with increasing of $\beta$-solid solution and sintering time. The fracture toughness of specimen with 80% $\beta$-solid solution content increased from 3.89 to 6.66 MPam1/2 with sintering sintering up to 20 hours/ But the amount of increased fracture toughness of specimen with below 20% $\beta$-solid solution content is not significant.

  • PDF

Effects of the Non-equilibrium Heat-treatment on Modification of Microstructures of Al-Si-Cu Cast Alloy (비평형 열처리에 의한 주조용 Al-Si-Cu합금 조직의 개량 효과)

  • Kim, Heon-Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.6
    • /
    • pp.391-397
    • /
    • 2000
  • Addition of Ca element and nonequilibrium heat treatment which promotes shape modification of eutectic Si and ${\beta}$ intermetallic compound were conducted to improve the mechanical properties of Al-Si-Cu alloy. Modification of eutectic Si and dissolution of needle-shape ${\beta}$ intermetallic compounds were possible by nonequilibrium heat treatment in which specimens were held at $505^{\circ}C$ for 2 hours in Al-Si-Cu alloy with Fe. Owing to the decrease in aspect ratio of eutectic Si by the heat treatment of the alloy with 0.33wt.% Fe, the increase in elongation was prominent to be more than double that in the as-cast specimen. Dissolution of needle-shape ${\beta}$ intermetallic compounds in the alloy with 0.85wt.% Fe led to the improvement of tensile strength as the length of ${\beta}$ compounds decreased to 50%.

  • PDF

A Study on the Synthesis of Alkoxides and Sialon (알콕사이드와 사이알론 합성에 관한 연구)

  • Ho Ha;Heecheol Lee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.267-275
    • /
    • 1988
  • Fine powders of amorphous $Al_2O_3,\;SiO_2,\;Al_2O_3-SiO_2$ system were prepared by hydrolysis of solutions containing alkoxides, aluminium tri-isopropoxide and silicon tetra-ethoxide. High purity ultrafine ${\beta}-sialon$ powders were prepared by the carbothermal reduction-nitridation of amorphous $Al_2O_3-SiO_2$ powders mixed with carbon black as a reducing agent. In the hydrolysis step the effect of the factors such as pH, reaction temperature and amount of water on the conversion rate of alkoxides to oxides was investigated. In the carbothermal reduction-nitridation the reaction path was assumed by the analysis of intermediates formed in the process of ${\beta}-sialon$ synthesis and the reaction kinetics of ${\beta}-sialon$ formation was considered.

  • PDF

Effect of Fe and Mn Contents on the Tensile Property of Al-9%Si-0.3%Mg Alloy for High Pressure Die Casting (고압 금형주조용 Al-9%Si-0.3%Mg 합금의 Fe, Mn 함량이 인장특성에 미치는 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.31 no.1
    • /
    • pp.18-25
    • /
    • 2011
  • Effect of Fe and Mn contents on the tensile properties has been studied in Al-9wt%Si-0.3wt%Mg alloy. As Fe content of Al-9wt%Si-0.3wt%Mg-0.5wt%Mn alloy increased from 0.15wt% to 0.45wt%, tensile strength of as-cast alloy decreased from 192 MPa to 174 MPa, and elongation of the alloy also decreased from 4.8% to 4.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with high Fe/Mn ratio of the alloy. However when Mn content of Al-9wt%Si-0.3wt%Mg-0.45wt%Fe alloy increased from 0.3wt% to 0.5wt%, tensile strength of T6 aged alloy increased from 265 MPa to 275 MPa, and elongation of the alloy increased from 2.3% to 3.6%. These improvements attribute to chinese script, ${\alpha}-Al_{15}(Mn,Fe)_3Si_2$ phase shape-modified from ${\beta}-Al_5FeSi$ phase with low Fe/Mn ratio of the alloy.

Accurate electronic structures for Ce doped SiAlON using a semilocal exchange-correlation potential

  • Yu, Dong-Su;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.438-438
    • /
    • 2011
  • White light-emitting diodes (LEDs), the so-called next-generation solid-state lighting, offer benefits in terms of reliability, energy-saving, maintenance, safety, lead-free, and eco-friendly. Recently, rare-earth-doped oxynitride or nitride compounds have attracted a great deal of interest as a photoluminescent material because of their unique luminescent property, especially for white LEDs applications. Ce doped ${\beta}$-SiAlON has been studied as a wavelength conversion phosphor in white LEDs thanks to its high absorption rates, high quantum efficiency, and excellent thermal stability. Previously researches were not enough to understand the detail mechanism and characteristics of ${\beta}$-SiALON. The bandgap structures and electronic structures were not exact due to limitation of calculation methods. In this study, to elucidate the Ce doping effect on the SiAlON system, accurate band structures and electronic structure of the Ce doped ${\beta}$-SiAlON was intensively investigated using density functional theory calculations. In order to get a better description of the band gaps, MBJLDA method were used. We have found a single Ce atom site in ${\beta}$-SiAlON super cell. Furthermore, the density of state, band structure and lattice constant were intensively investigated.

  • PDF

Effect of Porosity on the Fracture Toughness and Electrical Conductivity of Pressureless Sintered ${\beta}-SiC-ZrB_2$ Composites (무가압소결(無加壓燒結)한 ${\beta}-SiC-ZrB_2$ 복합체(複合體)의 파괴인성(破壞忍性)과 전기전도성(電氣傳導性)에 미치는 기공(氣孔)의 영향)

  • Shin, Yong-Deok;Kwon, Ju-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.847-849
    • /
    • 1998
  • The effect of $Al_{2}O_{3}$ additives on the microstructure, mechanical and electrical properties of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites by pressureless sintering were investigated. The ${\beta}$-SiC+39vol.%$ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_{2}O_{3}$ powder as a liquid forming additives at $1950^{\circ}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and weakly $\alpha$-SiC(4H), $\beta$-SiC(15R) phase. The relative density of composites was lowered by gaseous products of the result of reaction between $\beta$-SiC and $Al_{2}O_{3}$ therefore, porosity was increased with increased $Al_{2}O_{3}$ contents. The fracture toughness of composites was decreased with increased $Al_{2}O_{3}$ contents, and showed the maximum value of $1.4197MPa{\cdot}m^{1/2}$ for composite added with 4wt.% $Al_{2}O_{3}$ additives. The electrical resistivity of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composite was increased with increased $Al_{2}O_{3}$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

Effects of Porosity on the Properties of Pressureless Sintered $\beta$-SiC-$ZrB_2$ Electroconductive Ceramic Composites (무가압 소결법에 의한 $\beta$-SiC-$ZrB_2$편(偏) 도전성(導電性) 복합체(複合體) 미치는 기공(氣孔)의 영향)

  • Ju, Jin-Young;Kwon, Ju-Sung;Shin, Yong-Deok
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.311-313
    • /
    • 1997
  • The effects of porosity on the pressureless sintered $\beta$-SiC-$ZrB_2$ composites with $Al_2O_3$ additions(4, 8, 12wt.%) under argon atmosphere were investigated. Relative density of $\beta$-SiC-$ZrB_2$ composites were decreased with the $Al_2O_3$ content. The relative density and fracture toughness of $\beta$-SiC-$ZrB_2$ with 4wt% $Al_2O_3$ are 93.2%, $1.323MPa{\cdot}m^{1/2}$ respectively. The Vicker's hardness and flexural strength of $\beta$-SiC-$ZrB_2$ with 12wt.% $Al_2O_3$ are 0.492GPa, 261MPa respectively. Fracture toughness of $\beta$-SiC-$ZrB_2$ composites are directly proportional to relative density.

  • PDF