• Title/Summary/Keyword: $\beta$-Lactone

Search Result 54, Processing Time 0.018 seconds

Screening of Biologically Active Compound from Edible Plant Sources-IX. Isolation and Identification of Sesquiterpene Lactons Isolated from the Root of Ixeris dentata forma albiflora; Inhibition Effects on ACAT, DGAT and FPTase Activity (식용식물자원으로부터 활성물질의 탐색-IX. 흰씀바귀(Ixeris dentata forma albiflora)뿌리에서 Sesquiterpene Lactone 화합물의 분리 및 구조 동정; ACAT, DGAT 및 FPTase 효소 활성의 저해)

  • Bang, Myun-Ho;Jang, Tae-O;Song, Myoung-Chong;Kim, Dong-Hyun;Kwon, Byoung-Mog;Kim, Young-Kuk;Lee, Hyun-Sun;Chung, In-Sik;Kim, Dae-Keun;Kim, Sung-Hoon;Park, Mi-Hyun;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.251-257
    • /
    • 2004
  • The root of lxeris dentata forma albiflora was extracted with 80% aqueous MeOH and solvent fractionated with EtOAc, n-BuOH and water, successively. From the EtOAc and n-BuOH fractions, four sesquiterpene compounds were isolated through the repeated silica gel and ODS column chromatographies. The chemical structures were determined as zaluzanin C (1), $9{\alpha}-hydroxyguaian-4(l5),10(14),11(13)-triene-6,12-olide$ (2), $3{\beta}-O-{\beta}-D-glucopyranosyl-8{\alpha}-hydroxyguaian-4(15),10(14 )-diene-6,12-olide$ (3), and $3{\beta}-O-{\beta}- D-glucopyranosyl-8{\beta}hydroxyguaian-10(14)-ene-6,12-olide$ (4) through the interpretation of several spectral data including 2D-NMR. Some showed the inhibitory effects on DGAT (Diacylglycerol acyltransferase), ($IC_{50}$ values of 1, 2: 0.13, 0.10 mM), the catalyzing enzymes of the intracellular esterification of diacylglycerol and FPTase (Famesyl-protein transferase), ($IC_{50}$ values of 1, 2: 0.15, 0.18 mM), the farnesylation enzyme for Ras protein charge of cancer promotion.

Evaluation of Pharmacokinetics of Simvastatin and Its Pharmacologically Active Metabolite from Controlled-Release Tablets of Simvastatin in Rodent and Canine Animal Models

  • Shanmugam, Srinivasan;Ryu, Jae-Kuk;Yoo, Sun-Dong;Choi, Han-Gon;Woo, Jong-Soo
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.248-254
    • /
    • 2011
  • Biotransformation of pharmacologically inactive lactone prodrug simvastatin (SV) into pharmacologically active simvastatin ${\beta}$-hydroxy acid (SVA) exhibits inter-species differences due to variations in amount and activity of esterase enzymes. In this study, we investigated the pharmacokinetics (PK) of SV and its metabolite SVA following oral doses of SV from controlled-release (CR) tablets and immediate-release (IR) tablets in rodent and canine animal models that features different esterase activity. In rat PK study, no SV was detected in plasma for both formulations due to rapid hydrolysis of SV into SVA by plasma esterase. Besides, no significant differences in PK parameters of SV or SVA were observed between both species. In dog PK study, the relative oral bioavailability of CR tablets in terms of SV was 72.3% compared to IR tablets. Regarding formulation differences in dogs, CR tablets exhibited significantly lower $C_{max}$ (p<0.05), and higher $T_{max}$ (p<0.01) and MRT (p<0.01) for both SV and SVA compared to IR tablets. Accordingly, CR tablets of SV with prolonged drug release profiles in both species might be a potential candidate for a more effective delivery of SV with reduced side effects. Besides, similar PK parameters of SV and SVA in both species despite variation in enzyme activities suggested involvement of equally potent biotransformation pathways in these animal species.

Bioequivalence of Lovaload Tablet to Mevacor Tablet (Lovastatin 20 mg) (메바코 정 (로바스타틴 20 mg)에 대한 로바로드 정의 생물학적 동등성)

  • Song, Woo-Heon;Kim, Jung-Min;Cho, Seong-Wan;Kim, Jae-Hyun;Lim, Jong-Lae;Shin, Hee-Jong;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.4
    • /
    • pp.283-288
    • /
    • 1998
  • Lovastatin, one of the potent cholesterol-lowering agents, is an inactive lactone prodrug which is metabolized to its active open acid, lovastatin acid (LVA). Bioequivalence study of two lovastatin preparations, the test drug ($Mevacor^{\circledR}$: Chungwae Pharmaceutical Co., Ltd.) and the reference drug ($Lovaload^{\circledR}$: Chong Kun Dang Pharmaceutical Co., Ltd.), was conducted according to the guidelines of Korea Food and Drug Administration (KFDA). Fourteen healthy male volunteers, $23.9{\pm}3.9$ years old and $67.6{\pm}8.0$ kg of body weight in average, were divided randomly into two groups and administered the drug orally at the dose of 160 mg as lovastatin in a $2{\times}2$ crossover study. Plasma concentrations of lovastatin acid were analysed by HPLC method for 12 hr after administration. The extent of bioavailability was obtained from the plasma concentration-time profiles of total lovastatin acid after alkaline hydrolysis of the plasma samples. By alkaline hydrolysis, trace amounts of unmetabolized lovastatin were converted to lovastatin acid. The $AUC_{0-12hr}$ was calculated by the linear trapezoidal rule method. The $C_{max}$ and $T_{max}$ were compiled directly from the plasma drug concentration-time data. Student's t-test indicated no significant differences between the formulations in these parameters. Analysis of variance (ANOVA) revealed that there were no differences in AUC, $C_{max}$, and $T_{max}$ between the formulations. The apparent differences between the formulations were far less than 20% (e.g., 7.07, 5.77 and 1.18% for AUC, $C_{max}$, and $T_{max}$, respectively). Minimum detectable differences(%) between the formulations at ${\alpha}=0.05$ and $1-{\beta}=0.8$ were less than 20% (e.g., 17.2, 15.1, and 15.9% for AUC, Cmax, and Tmax, respectively). The 90% confidence intervals for these parameters were also within ${\pm}20%$ (e.g.. $-5.20{\sim}19.3$, $-5.00{\sim}16.5$, and $-10.2{\sim}12.5%$ for AUC, $C_{max}$, and $T_{max}$, respectively). These results satisfied the bioequivalence criteria of KFDA guidelines, indicating that the two formulations of lovastatin were bioequivalent.

  • PDF

In vivo Metabolism of Endosulfan in Carp (Cyprinus carpio) (In vivo 시험에 의한 잉어체내 $^{14}C-endosulfan$의 대사)

  • Lee, K.B.;Shim, J.H.;Suh, Y.T.
    • Applied Biological Chemistry
    • /
    • v.37 no.3
    • /
    • pp.203-209
    • /
    • 1994
  • When $^{14}C-{\alpha}-endosulfan$ was incubated with carp liver, kidney and gut preparations, it was metabolized to water soluble and organosoluble metabolites. In an in vitro test, endosulfan was converted to endosulfan ${\alpha}-hydroxyether$ (EHE), endosulfan alcohol (EA) and endosulfan ether (EE). The addition of NADPH resulted in rapid conversion of endosulfan to the metabolites in 105,000 g soluble fraction and microsomes. However, the rate of metabolism of endosulfan in liver, kidney and gut supplemented with NADPH as a cofactor was higher in the 105,000 g soluble fraction than that in the microsomes of carp under incubation conditions. The enzymes probably involved in the metabolism of endosulfan include the glutathione S-transferase (GST) and the mixed function oxidases (MFO), based on the evidence that addition of either GSH or NADPH increased the degradation of endosulfan.

  • PDF