• Title/Summary/Keyword: $\beta$-Amyloid peptide

Search Result 117, Processing Time 0.027 seconds

Ameliorating Effects of Cinnamomum loureiroi and Rosa laevigata Extracts Mixture against Trimethyltin-induced Learning and Memory Impairment Model (트리메틸틴 처리로 유도된 기억·학습 능력 손상 모델에 대한 계피와 금앵자 혼합추출물의 개선 효과)

  • Choi, Soo Jung;Kim, Cho Rong;Park, Chan Kyu;Gim, Min Chul;Choi, Jong Hun;Shin, Dong Hoon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.6
    • /
    • pp.353-360
    • /
    • 2017
  • Background: A critical features of Alzheimer's disease (AD) is cognitive dysfunction, which partly arises from decreased in acetylcholine levels. AD afftected brains are characterized by extensive oxidative stress, which is thought to be primarily induced by the amyloid beta ($A{\beta}$) peptide. In a previous study, Cinnamomum loureiroi tincture inhibited acetylcholinesterase (AchE) activity. That study identified AChE inhibitor in the C. loureiroi extract. Furthermore, the C. loureiroi extract enhanced memory in a trimethyltin (TMT)-induced model of cognitive dysfunction, as assessed via two behavioral tests. Rosa laevigata extract protected against oxidative stress-induced cytotoxicity. Administrating R. laevigata extracts to mice significantly reversed $A{\beta}$-induced learning and memory impairment, as shown in behavioral tests. Methods and Results: We conducted behavioral to examine the synergistic effects of C. loureiroi and R. laevigata extracts in inhibiting AChE and counteracting TMT-induced learning and memory losses. We also performed biochemical assays. The biochemical results showed a relationship between increased oxidative stress and cholinergic neurons damage in TMT-treated mice. Conclusions: A diet containing C. loureiroi and R. laevigata extracts ameliorated learning and memory impairments in the Y-maze and passive avoidance tests, and exerted synergistic inhibitory effect against AChE and lipid peroxidation.

Effects of Hwangryunhaedok-tang on DNA Damage, Antioxidant Enzymes Expression and Acetylcholinesterase Activity (황연해독탕(黃連解毒湯)의 산화적 DNA 손상에 대한 보호효과 및 항산화효소계의 발현과 Acetylcholinesterase 활성에 미치는 영향)

  • Moon, Jin-Young
    • The Korea Journal of Herbology
    • /
    • v.22 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • Objectives : In Alzheimer's disease(AD), free radical oxidative stress caused by amyloid beta-peptide may lead to DNA damage, neuronal dysfunction, neurotoxicity and cell death, Hwangryunhaedok-tang(HHT) is traditionally used for the treatment of pyrogenetic diseases. To develop a new anti-AD drug from natural herb, HHT was selected and extracted in this study. Methods : The antioxidant activities of HHT water extract powder were examined by hydroxyl radical-induced DNA strand nicking assay, and antioxidative enzymes expression assay in H4IIE cell. In addition, HHT was examined for the inhibitory effect on the acetylcholinesterase(AChE) using by Ellman's coupled assay. Results: The HHT exhibit DNA protective effect in the hydroxyl radical-induced DNA Strand nicking assay, mRNA expression of superoxide dismutase and glutathione peroxidase were recovered at a normal level by HHT treatment in H4IIE cell. Furthermore, water extract of HHT showed inhibitory effect on AChE activity. Conclusion : These results suggest that HHT may be effective in delaying and preventing AD progression related to the free radical-induced DNA damage and AChE activity.

  • PDF

Effects of HX106N, a Water-Soluble Botanical Formulation on Scopolamine-Induced Memory Impairment in Mice (식물성 열수 추출물 HX106N이 스코폴라민으로 유도한 생쥐 기억력 저하에 미치는 효과에 관한 연구)

  • Lee, Doo Suk;Jeong, Jae-Gyun;Kim, Sunyoung
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.4
    • /
    • pp.673-677
    • /
    • 2014
  • HX106N은 용안육, 맥문동, 단삼 및 천마 등의 4가지 식물로 구성된 추출물로서, 선행 연구에서 amyloid ${\beta}$ peptide에 의한 생쥐의 기억력 저하 및 산화 손상을 억제하는 것으로 밝혀졌다. 이 연구에서는 HX106N이 비선택적 무스카린 수용체 길항제로 잘 알려진 스코폴라민(scopolamine)으로 유도한 콜린성 건망증(cholinergic amnesia)에 어떤 영향을 미치는지를 평가하였다. ICR 생쥐에게 스코폴라민(1 mg/kg body weight, i.p.)을 주입하기 1시간 전에 HX106N(100 mg/kg body weight, p.o.)을 투여하였다. 30분 후 수행한 Y-미로 시험(Y-maze test) 및 수동 회피 시험(passive avoidance test)에서 HX106N는 스코폴라민에 의해 감소되는 자발적 변경 행동(spontaneous alternation) 및 지체시간(step-through latency)을 유의미하게 억제하여 건망증을 개선시키는 것으로 나타났다. 또한 HX106N을 투약 1시간 후 생쥐의 해마와 대뇌피질 부위의 아세틸콜린에스테라제(acetylcholinesterase; AChE)의 활성을 측정한 결과 통계적으로 유의미한 정도의 활성 감소가 관찰되었다. 이러한 결과들을 종합할 때 HX106N은 AD에서 관찰되는 콜린성신경전달 장애로 인한 기억력 저하 억제에 사용될 수 있는 가능성을 가진 것으로 판단된다.

Role of soy lecithin combined with soy isoflavone on cerebral blood flow in rats of cognitive impairment and the primary screening of its optimum combination

  • Hongrui Li;Xianyun Wang;Xiaoying Li;Xueyang Zhou;Xuan Wang;Tiantian Li;Rong Xiao;Yuandi Xi
    • Nutrition Research and Practice
    • /
    • v.17 no.2
    • /
    • pp.371-385
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Soy isoflavone (SIF) and soy lecithin (SL) have beneficial effects on many chronic diseases, including neurodegenerative diseases. Regretfully, there is little evidence to show the combined effects of these soy extractives on the impairment of cognition and abnormal cerebral blood flow (CBF). This study examined the optimal combination dose of SIF + SL to provide evidence for improving CBF and protecting cerebrovascular endothelial cells. MATERIALS/METHODS: In vivo study, SIF50 + SL40, SIF50 + SL80 and SIF50 + SL160 groups were obtained. Morris water maze, laser speckle contrast imaging (LSCI), and hematoxylin-eosin staining were used to detect learning and memory impairment, CBF, and damage to the cerebrovascular tissue in rat. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the oxidized glutathione (GSSG) were detected. The anti-oxidative damage index of superoxide dismutase (SOD) and glutathione (GSH) in the serum of an animal model was also tested. In vitro study, an immortalized mouse brain endothelial cell line (bEND.3 cells) was used to confirm the cerebrovascular endothelial cell protection of SIF + SL. In this study, 50 µM of Gen were used, while the 25, 50, or 100 µM of SL for different incubation times were selected first. The intracellular levels of 8-OHdG, SOD, GSH, and GSSG were also detected in the cells. RESULTS: In vivo study, SIF + SL could increase the target crossing times significantly and shorten the total swimming distance of rats. The CBF in the rats of the SIF50 + SL40 group and SIF50 + SL160 group was enhanced. Pathological changes, such as attenuation of the endothelium in cerebral vessels were much less in the SIF50 + SL40 group and SIF50 + SL160 group. The 8-OHdG was reduced in the SIF50 + SL40 group. The GSSG showed a significant decrease in all SIF + SL pretreatment groups, but the GSH showed an opposite result. SOD was upregulated by SIF + SL pretreatment. Different combinations of Genistein (Gen)+SL, the secondary proof of health benefits found in vivo study, showed they have effective anti-oxidation and less side reaction on protecting cerebrovascular endothelial cell. SIF50 + SL40 in rats experiment and Gen50 + SL25 in cell test were the optimum joint doses on alleviating cognitive impairment and regulating CBF through protecting cerebrovascular tissue by its antioxidant activity. CONCLUSIONS: SIF+SL could significantly prevent cognitive defect induced by β-Amyloid through regulating CBF. This kind of effect might be attributed to its antioxidant activity on protecting cerebral vessels.

Ginsenosides attenuate bioenergetics and morphology of mitochondria in cultured PC12 cells under the insult of amyloid beta-peptide

  • Kwan, Kenneth Kin Leung;Yun, Huang;Dong, Tina Ting Xia;Tsim, Karl Wah Keung
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.473-481
    • /
    • 2021
  • Background: Mitochondrial dysfunction is one of the significant reasons for Alzheimer's disease (AD). Ginsenosides, natural molecules extracted from Panax ginseng, have been demonstrated to exert essential neuroprotective functions, which can ascribe to its anti-oxidative effect, enhancing central metabolism and improving mitochondrial function. However, a comprehensive analysis of cellular mitochondrial bioenergetics after ginsenoside treatment under Aβ-oxidative stress is missing. Methods: The antioxidant activities of ginsenoside Rb1, Rd, Re, Rg1 were compared by measuring the cell survival and reactive oxygen species (ROS) formation. Next, the protective effects of ginsenosides of mitochondrial bioenergetics were examined by measuring oxygen consumption rate (OCR) in PC12 cells under Aβ-oxidative stress with an extracellular flux analyzer. Meanwhile, mitochondrial membrane potential (MMP) and mitochondrial dynamics were evaluated by confocal laser scanning microscopy. Results: Ginsenoside Rg1 possessed the strongest anti-oxidative property, and which therefore provided the best protective function to PC12 cells under the Aβ oxidative stress by increasing ATP production to 3 folds, spare capacity to 2 folds, maximal respiration to 2 folds and non-mitochondrial respiration to 1.5 folds, as compared to Aβ cell model. Furthermore, ginsenoside Rg1 enhanced MMP and mitochondrial interconnectivity, and simultaneously reduced mitochondrial circularity. Conclusion: In the present study, these results demonstrated that ginsenoside Rg1 could be the best natural compound, as compared with other ginsenosides, by modulating the OCR of cultured PC12 cells during oxidative phosphorylation, in regulating MMP and in improving mitochondria dynamics under Aβ-induced oxidative stress.

Protective Effects of Black Soybean Seed Coat Extracts against Oxidative Stress-induced Neurotoxicity (산화적 손상에 의해 유도된 신경세포독성에 대한 검정콩 껍질 추출물의 보호효과)

  • Kwak, Ji Hyeon;Jo, Yu Na;Jeong, Ji Hee;Kim, Hyeon Ju;Jin, Su Il;Choi, Sung-Gil;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.257-261
    • /
    • 2013
  • Rat pheochromocytoma cells (PC12) and mice were utilized as in vitro and in vivo models to determine the neuroprotective effects of a 70% acetone extract of black soybean seed coat (BSSCE). BSSCE showed higher total phenolic contents than other extracts. Intracellular reactive oxygen species accumulation from $H_2O_2$ treatment of PC12 cells was significantly reduced when BSSCE was present in the media compared to PC12 cells treated with $H_2O_2$ only. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium-bromide (MTT) reduction assay and lactate dehydrogenase assay also showed significantly increased protective effects in PC12 cells. In addition, BSSCE improved the in vivo cognitive ability against amyloid beta peptide-induced neuronal deficits.

Anti-oxidative and Cytoprotective Effect of Ursodeoxycholic Acid, an Active Compound from the Bear's Gall, in Mouse Microglia (생쥐 뇌소교세포주에서 웅담추출활성성분(우르소데옥시콜린산)의 항산화 및 세포보호효과)

  • Joo, Seong-Soo;Kim, Seong-Kun;Yoo, Yeong-Min;Ryu, In-Wang;Kim, Kyung-Hoon;Lee, Do-Ik
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.452-455
    • /
    • 2006
  • The in vitro cytoprotective and anti-oxidative effects of ursodeoxycholic acid, a major active compound from bear's gall were investigated in mouse brain microglia. In the present study, we wished to scrutinize the potential role of UDCA as an anti-neurodegenerative agent in neurodegenerative disease such as Alzheimer's disease. This concept was supported by the multiple preliminary studies in which UDCA has an anti-inflammatory effect in microglial cells. In the study, we found that $7.5\;{\mu}g/mL$ UDCA was effective in the protection of cells from $H_2O_2$ damage, a reactive oxygen, and the resuIt was coincided with the anti-apoptotic effect in DAPI staining. Moreover, the metal-catalyzed oxidation study showed that UDCA has antioxidant effect as much as ascorbic acid at $50{\sim}100\;{\mu}g/mL$. In conclusion, these study results suggested that neuro-degenerative diseases such as Alzheimer's disease probably caused by over-expressed beta amyloid peptide in elderly people can be controled by UDCA through an anti-inflammatory, anti-oxidative and anti-apoptotic effect. The evidences showed in the study may be references for more in-depth in vivo and clinical studies for a candidate of anti-neurodegenerative therapy in the near future.