• Title/Summary/Keyword: $\b{crystallinity}$

Search Result 147, Processing Time 0.018 seconds

Sonochemical Synthesis and Photocatalytic Characterization of ZnO Nanoparticles (초음파 방법을 이용한 ZnO 나노입자 합성 및 광촉매 특성 연구)

  • Kim, Min-Seon;Kim, Jae-Uk;Yoo, Jeong-Yeol;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.34-38
    • /
    • 2016
  • In this paper, zinc oxide nanoparticles (ZnO NPs) were synthesized using the sonochemical method, where equimolar amounts of zinc acetate dehydrate and sodium hydroxide were separately dissolved in deionized water, and then mixed for 30 min under magnetic stirring. The resultant white gel was sonicated for 60, 120, 180, 240, and 360 min with magnetic stirring. The obtained precipitates were centrifuged, repeatedly washed with ethanol to remove ionic impurities, and dried at 50 ℃ for 24 h. The formation of pure NPs was confirmed by X-ray diffraction, and their crystallinity and crystal phases were analyzed as well. Structural investigation was carried out by field-emission scanning electron microscopy (FE-SEM). The photocatalysis behavior of the ZnO NPs was investigated in a dark room under UV irradiation, using Rhodamine B. Spherical, rod, and flower-like ZnO NPs could be obtained by adjusting the sonication time, as observed by FE-SEM. The flower-like ZnO NPs exhibited excellent photocatalytic activity.

Development of Bi0.5(Na0.78K0.22)0.5TiO3 Lead-free Piezoelectric Ceramic Material with Core-shell Structure for Biomedical (바이오 메디컬용 코어-쉘 구조의 Bi0.5(Na0.78K0.22)0.5TiO3계 무연압전세라믹 소재의 개발)

  • Seong-jun Yun;Joonsoo Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.15-22
    • /
    • 2023
  • BNKT Ceramics, one of the representative Pb free based piezoelectric ceramics, constitutes a perovskite(ABO3) structure. At this time, the perovskite structure (ABO3) is in the form where the corners of the octahedrons are connected, and in the unit cell, two ions, A and B, are cations, A ion is located at the body center, B ion is located at each corner, and an anion O is located at the center of each side. Since Bi, Na, and K sources constituting the A site are highly volatile at a sintering temperature of 1100℃ or higher, it is difficult to maintain uniformity of the composition. In order to solve this problem, there should be suppression of volatilization of the A site material or additional compensation of the volatilized. In this study, the basic composition of BNKT Ceramics was set to Bi0.5(Na0.78K0.22)0.5TiO3 (= BNKT), and volatile site (Bi, Na, and K sources) were coated in the form of a shell to compensate additionally for the A site ions. In addition, the physical and electrical properties of BNKT and its coated with shell additives(= @BNK) were compared and analyzed, respectively. As a result of analyzing the crystal structure through XRD, both BNKT(Core) and @BNK(Shell) had perovskite phases, and the crystallinity was almost similar. Although the Curie temperature of the two sintered bodies was almost the same (TC = 290 ~ 300 ℃), it was confirmed that the d33 (piezoelectric coefficient) and Pr (residual polarization) values were different. The experimental results indicated that the additional compensation for a shell additive causes the coarsening, resulting in a decrease in sintering density and Pr(remanent polarization). However, coating shell additives to compensate for A site ion is an effective way to suppress volatilization. Based on these experimental results, it would be the biggest advantage to develop an eco-friendly material (Lead-free) that replaced lead (Pb), which is harmful to the human body. This lead-free piezoelectric material can be applied to a biomedical device or products(ex. earphones (hearing aids), heart rate monitors, ultrasonic vibrators, etc.) and skin beauty improvement products (mask packs for whitening and wrinkle improvement).

Development of novel oxyfluoride glasses and glass ceramics for photoluminescence material by a containerless processing (무용기 용융법을 활용한 형광소재용 결정화 유리 개발)

  • Hyerin Jo;Minsung Hwang;Youngjin Lee;Jaeyeop Chung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.181-186
    • /
    • 2023
  • In this study, novel Eu2O3-BaF2-La2O3-B2O3 oxyfluoride glasses and glass ceramics were developed by a containerless processing. Differential thermal analysis (DTA) analysis was performed to analyze the thermophysical properties of oxyfluoride glasses doped with Eu2O3, and photoluminescence (PL) characteristics were analyzed to evaluate the luminous efficiency depending on the degree of crystallinity. The glass transition temperature decreased with increasing BaF2 concentration since BaF2 acts as a network modifier in this glass system. In addition, thermal stability which can be estimated by the difference between the glass transition temperature and the onset temperature of the crystallization decreased with increasing BaF2 contents. The peak related to the BaF2 crystal was confirmed after the crystallization by X-ray Diffraction (XRD) analysis. Photoluminescence intensity increased after the crystallization which indicates that the Eu3+ ions are sited in BaF2 crystal. La 3d5/2 x-ray photoelectron spectroscopy (XPS) and F1s XPS spectra were analyzed to precisely understand the behavior of the fluorine ion in the glass structure. Fluorine tends to bond with the network modifying cations such as La3+ and Ba2+ ions and after the crystallization the La-F bonds decreased because F- ions used to form BaF2 crystals.

Structural Characteristics and Physical Properties of Wild Silk Fibres; Antheraea pernyi and Antheraea yamamai (야잠사의 구조특성 및 물리적 성질)

  • 권해용;박영환
    • Journal of Sericultural and Entomological Science
    • /
    • v.36 no.2
    • /
    • pp.138-146
    • /
    • 1994
  • The structural characteristics of Antheraea yamamai and Antheraea pernyi silk were investigated by using x-ray diffraction method, IR spectroscopy and polarizing microscopy. The amino acid composition, fiber density, thermal decomposition temperature and glass transition temperature were also measured for relating these physical properties to the structure in comparison with those of Bombyx mori silk fiber. There was no significant structural difference between A. yamamai and A. pernyi silk fiber on an examination of x-ray diffraction curve and IR spectrum. Both of these wild silk fibers showed double diffraction peaks at the Bragg angle 2Θ16.7˚ and 20.5˚by x-ray diffraction analysis as well as IR absorption peaks for the bending vibration of specific groups related to ala-ala amino acid sequence. On the other hand, the x-ray diffraction curve and IR spectrum of Bombyx mori silk fiber are different from those of wild silk fibers, indicating different crystal structure as well as amino acid sequences. It showed under the polarizing microscope examination that the birefringence and optical orientation factor of wild silk fibers are much lower than those of B. mori silk. Also, the surface of degummed wild silk fibers was characterized by the longitudinal stripes of microfibrils in the direction of fiber axies. The amino acid composition, which is strongly related to the fine structure and properties, was not significantly different between these two wild silk fibers. However, the alanine content was somewhat less and polar amino acid content more for A. yamamai. As a result of fiber density measurement, the specific gravities of B. mori, A. pernyi and A. yamamai were 1.355~1.356, 1.308~1.311, 1.265~1.301g/㎤ in the order, respectively. The calculated crystallinity(%) was 64% for B. mori and 51~52% for wild silk fibers, which showed same trend by IR method in spite of somewhat higher value. The thermal decomposition behaviour was examined by DSC and TGA, showing that the degradation temperature was in the order of B mori, A. prernyi and A. yamamai at around 350$^{\circ}C$. It was also observed by TGA that the decomposition seems to proceed step by step according to their specific regions in the fiber structure, resulting the difference in their thermal stabilities. The glass transition temperature was turned out to be 220$^{\circ}C$ for B. mori, 240$^{\circ}C$ A. yamamai and 255$^{\circ}C$ A. pernyi by the dynamic mechanical analysis. It is expected that the chemical properties are affected by the dynamic mechanical behavior in accordance with their structural characters.

  • PDF

Growth and electrical properties of $Sr_2$$({Ta_{1-x}},{Nb_x})_2$)$O_7$ thin films by RF sputtering (RF Sputtering을 이용한 $Sr_2$$({Ta_{1-x}},{Nb_x})_2$)$O_7$ 박막의 성장 및 전기적 특성)

  • In, Seung-Jin;Choi, Hoon-Sang;Lee, Kwan;Choi, In-Hoon
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.367-371
    • /
    • 2001
  • In this paper, theS $r_2$(T $a_{1-x}$ , N $b_{x}$)$_2$ $O_{7}$(STNO) films among ferroelectric materials having a low dielectric constant for metal-ferroelectric-semiconductor field effect transistor(MFS-FET) were discussed. The STNO thin films were deposited on p-type Si(100) at room temperature by co-sputtering with S $r_2$N $b_2$ $O_{7(SNO)}$ ceramic target and T $a_2$ $O_{5}$ ceramic target. The composition of STNO thin films was varied by adjusting the power ratios of SNO target and T $a_2$ $O_{5}$ target. The STNO films were annealed at 8$50^{\circ}C$, 90$0^{\circ}C$ and 9$50^{\circ}C$ temperature in oxygen ambient for 1 hour. The value of x has significantly influenced the structure and electrical properties of the STNO films. In the case of x= 0.4, the crystallinity of the STNO films annealed at 9$50^{\circ}C$ was observed well and the memory windows of the Pt/STNO/Si structure were 0.5-8.3 V at applied voltage of 3-9 V and leakage current density was 7.9$\times$10$_{08}$A/$\textrm{cm}^2$ at applied voltage of -5V.of -5V.V.V.

  • PDF

NEAR-INFRARED STUDIES ON STRUCTURE-PROPERTIES RELATIONSHIP IN HIGH DENSITY AND LOW DENSITY POLYETHYLENE

  • Sato, Harumi;Simoyama, Masahiko;Kamiya, Taeko;Amari, Trou;Sasic, Slobodan;Ninomiya, Toshio;Siesler, Heinz-W.;Ozaki, Yukihiro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1281-1281
    • /
    • 2001
  • Near-infrared (NIR) spectra have bean measured for high-density (HDPE), linear low-density (LLDPE), and low-density (LDPE) polyethylene in pellet or thin films. The obtained spectra have been analyzed by conventional spectroscopic analysis methods and chemometrics. By using the second derivative, principal component analysis (PCA), and two-dimensional (2D) correlation analysis, we could separate many overlapped bands in the NIR. It was found that the intensities of some bands are sensitive to density and crystallinity of PE. This may be the first time that such bands in the NIR region have ever been discussed. Correlations of such marker bands among the NIR spectra have also been investigated. This sort of investigation is very important not only for further understanding of vibration spectra of various of PE but also for quality control of PE by vibrational spectroscopy. Figure 1 (a) and (b) shows a NIR reflectance spectrum of one of the LLDPE samples and that of PE, respectively. Figure 2 shows a PC weight loadings plot of factor 1 for a score plot of PCA for the 16 kinds of LLDPE and PE based upon their 51 NIR spectra in the 1100-1900 nm region. The PC loadings plot separates the bands due to the $CH_3$ groups and those arising form the $CH_2$ groups, allowing one to make band assignments. The 2D correlation analysis is also powerful in band enhancement, and the band assignments based upon PCA are in good agreement with those by the 2D correlation analysis.(Figure omitted). We have made a calibration model, which predicts the density of LLDPE by use of partial least square (PLS) regression. From the loadings plot of regression coefficients for the model , we suggest that the band at 1542, 1728, and 1764 nm very sensitive to the changes in density and crystalinity.

  • PDF

Structural and physicochemical characterization of starch from Korean rice cultivars for special uses (특수용도 쌀품종 내 전분의 구조적 및 이화학적 특성)

  • Lee, Seul;Lee, Eun-Jung;Chung, Hyun-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Molecular structure, physicochemical properties, and in vitro digestibility of starch from Korean rice cultivars for special uses (Baegjinju 1, Hanareum, Deuraechan, and Goami 4) were investigated. The starch from Baegjinju 1 had the lowest amylose content (9.7%) and Hanareum, Deuraechan, and Goami 4 had intermediate amylose (20-25%) contents. Baegjinju 1 had a lower proportion of short amylopectin branch chains than the other rice starches. Hanareum had the lowest relative crystallinity and the highest intensity ratio of $1047cm^{-1}/1022cm^{-1}$ among the rice starches. The starch from Goami 4 had a higher pasting temperature and lower gelatinization enthalpy than the other rice starches. Peak viscosity of rice starch from Baegjinju 1 was substantially higher than peak viscosity of other rice starches. Rice starch from Baegjinju 1 had significantly higher rapidly digestible starch content and lower resistant starch content than other rice starches, whereas there was no significant difference in resistant starch content among the rice starches.

Physicochemical Properties of Crosslinked Potato Starch (가교결합 감자 전분의 이화학적 특성)

  • Kim, Hyang-Sook;Lee, Young-Eun
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.573-579
    • /
    • 1996
  • Crosslinked potato starches (XP), from 2,400 to 1,900 anhydroglucose units per crosslinked (AGU/CL), were prepared by reacting with epichlorohydrin. Some of the physicochemical properties of the XPs were then compared with those of native potato and cowpea starches. Crosslinking decreased moisture, protein and ash contents but had no effect on phosphorus content. Water binding capacities of the XPs increased as the degree of crosslinking increased, and that of the XP with 2,100 AGU/CL approached the value of cowpea starch. The absorption maxima of the starch-iodine complex shifted from 594 to 580 nm. Granule size increased slightly and surface appearance of the granule became rough when crosslinked. Both native and crosslinked potato starches showed B type X-ray diffraction pattern, and the relative crystallinity was not affected by crosslinking. Gelatinization temperature and the heat of gelatinization, measured by differential scanning calorimeter (DSC), did not change within the range of crosslinking tested. From X-ray and DSC data, it was concluded that the crosslinking ocurred in the amorphous region of the starch granule.

  • PDF

Physicochemical Properties of Diverse Rice Species (품종별 쌀의 이화학적 특성)

  • Choi, Ok-Ja;Kim, Yong-Doo;Shim, Jae-Han;Noh, Myeong-Hee;Shim, Ki-Hoon
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.532-538
    • /
    • 2012
  • Seven rice varieties (Dasan, Keunseon, Goami, Baekjinju, Seolgaeng, Hangangchal and Heukseol) were used to study the physicochemical properties of dry milled (200-mesh) rice flour species. The moisture and crude protein contents of rice were 15.00-15.10% and 6.09-8.21%, respectively. The crude lipid and crude ash of rice were 0.21-1.02% and 0.37-1.62%, respectively. As for the Hunter's color value, the L value was highest in the Dasan flour (96.47); the a value was highest in the Heukseol flour (5.03); and the b value was highest in the Baekjinju flour (3.36). The water aborption index was highest in the Goami flour (1.45), and the water solubility index was highest in the Hangangchal flour (9.16%). The amylose contents of the rice flour species were highest in the Goami (26.42%) rice flour, followed by the Dasan (19.39%), Seolgaeng (19.24%), Keunseon (18.06%), Heukseol (15.52%), Baekjinju (9.16%), and Hangangchal (0.84%) rice flour. In the X-raydiffractin patterns of the diverse species, seven tice varieties showed A-type crystallinity. As for the amylogram properties, the initial pasting temperature was 58.00-$69.03^{\circ}C$. The maximum viscosity was highest in the Dasan flour. The Heukseol flour had the lowest maximum viscosity, breakdown, and setback. In terms of the thermal properties of the differential scanning calorimeter (DSC), the onset temperature was 59.03-$66.84^{\circ}C$; the peak temperature, 66-70-$72.82^{\circ}C$; and the end temperature, 74.06-$78.66^{\circ}C$. The enthalpy (${\Delta}H$) was lowest in the Heukseol flour (7.59 J/g) and highest in the Seolgaeng flour (11.36J/g).

Structural and emulsification properties of octenyl succinylated potato dextrin upon different preparation methods (OSA-감자 덱스트린의 구조 및 유화 특성 연구)

  • Han, Yu-Jin;Li, Shun Ji;Han, Jung-Ah
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • Octenyl succinylated (OSA) potato starch was dextrinized by two methods: ultrasound (at 25, 50, or $70^{\circ}C$ for 1 h; OSA-25UT, OSA-50UT, and OSA-70UT, respectively) and acid hydrolysis (for 1 or 4 h; OSA-AD1H or OSA-AD4H, respectively), and the properties of the resulting starch were analyzed. The melting enthalpy of OSA-70UT decreased the most (from 14.0 to 10.0 mJ/mg), indicating chain degradation. For pasting properties, as ultrasound treatment temperature increased, peak viscosity decreased (2884, 2550, and 1888 cP, respectively), whereas acid hydrolysis increased peak viscosity and decreased pasting temperature. The relative crystallinity of OSA-dextrin produced by ultrasound or acid hydrolysis significantly decreased (from 33.61 to 14.90-26.03 and 19.28-20.05, respectively) as temperature or time increased, yet a B-type crystal pattern was maintained. Regarding emulsifying stability and sensory tests of mayonnaise prepared with OSA potato dextrin, mayonnaise with OSA-70UT was stable for short storage period (1 week), however mayonnaise with OSA-AD1H was the most suitable for long storage periods (from 2 to 4 weeks). In addition, the OSA-70UT was the most acceptable for mayonnaise in the sensory test.