• Title/Summary/Keyword: $\alpha-Fe_2O_3$

Search Result 331, Processing Time 0.022 seconds

Effects of Substrate Temperature on Structural and Electrical Properties of α-Fe2O3 Films Prepared by Ultrasonic Spray Pyrolysis (초음파분무법으로 제조한 α-Fe2O3 막의 구조적 및 전기적 특성에 미치는 기판온도 효과)

  • Ma, Tae-Young;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.282-286
    • /
    • 2004
  • ${\alpha}-Fe_{2}O_{3}$ films were prepared by ultrasonic spray pyrolysis (USP) on $SiO_{2}$ coated Si wafers using iron acetylacetonate as an iron precursor. The crystallographic properties and surface morphologies of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. X-ray photoelectron spectroscopy (XPS) was carried out to determine the Fe oxidation states. In order to observe stability of the films to temperature, the resistance variation of the films with an ambient temperature was measured. The effects of substrate temperature on the structural and electrical properties of the ${\alpha}-Fe_{2}O_{3}$ films were studied. The films were densified from the substrate temperature of $350^{\circ}C$. The grain size of the films grown at $400^{\circ}C$ was shown to be increased abruptly comparing with that of $350^{\circ}C$. The films showed a low resistance variation between the ambient temperature of $300^{\circ}C$ and $350^{\circ}C$.

Kinetics of Seed Growth of α-Ferric Oxyhydroxide (α-Ferric oxyhydroxide 입자의 핵성장 반응에 관한 연구)

  • Seul, Soo-Duk;Shin, Dong-Ock
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.602-609
    • /
    • 1997
  • The seed formation and growth of $\alpha$-ferric oxyhydroxide with aerial oxidative precipitation from aqueous solution of ferrous sulfate with KOH, NaOH, $Na_2CO_3$ and $K_2CO_3$ as precipitants have been studied by free pH drift experiment. It has been shown that all precipitants give same particle formation and growth path, and average particle length from KOH and NaOH as precipitants was about 1.5 times shorter than that of $K_2CO_3$ and $Na_2CO_3$. When initial mole ratio, $R_o=[Fe^{2+}]_o/[OH^-]_o$ of KOH was decreased the particle was grown oxyhydroxide seed growth from aqueous solution of ferrous sulfate with KOH has been studied. The influence of the air flow rate, reaction temperature and initial mole ratio, $R_o=[Fe^{2+}]_o/[OH^-]_o$, on the kinetics of seed growth are investigated by static pH experiment. The oxidation rate of seed growth increased with increase in the air low rate, reaction temperature and initial mole patio. The activation energy of seed growth is 16.16 KJ/mol and the rate equation of seed growth can be written as follows: $-\frac{d[Fe^{2+}]}{dt}=1.46{\times}10^4[P_{o2}]^{0.66}[OH^-]^{2.19}exp(-\frac{16.16}{dt})$.

  • PDF

Activation of Spinel Phase Magnetite by Hydrogen Reduction (스피넬상 마그네타이트의 수소환원에 의한 활성화)

  • 류대선;이동석;이풍헌;김순태
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.559-563
    • /
    • 2000
  • To decompose carbon dioxide, magnetite was synthesized with 0.2M-FeSO4$.$7H2O and 0.5 M-NaOH by coprecipitation. The deoxidized magnetite was prepared from the magnetite by hydrogen reduction for 1, 1.5, 2 hr. The degree of hydrogen reduction and the decomposition rate of carbon dioxide were investigated with hydrogen reduction time. The crystal structure of the magnetite was identified spinel structute by the X-ray powder diffractions. After magnetite was reduced by hydrogen, magnetite reduced by hydrogen become new phae(${\alpha}$-Fe2O3, ${\alpha}$-Fe) and spinel type simultaneously. After decomposing of carbon dioxide at 350$^{\circ}C$, new phse(${\alpha}$-Fe2O3, ${\alpha}$-Fe) were removed and the spinel type only existed. The specific surface area of the synthesized magnetite was 46.69㎡/g. With the increase of the hydrogen reduction time, the grain size, the hydrogen reduction degree and the decomposition rate of carbon dioxide was increased.

  • PDF

Fabrication of Composite Powders by Mechanical Alloying of Magnetite-M (M = Ti, Al) Systems (마그네타이트와 금속(Ti, Al)의 기계적 합금화에 의한 복합분말의 합성)

  • 홍대석;이성희;이충효;김지순;권영순
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.247-252
    • /
    • 2004
  • Recently, it has been found that mechanical alloying (MA) facilitates the nanocomposites formation of metal-metal oxide systems through solid-state reduction during ball milling. In this work, we studied the MA effect of Fe$_{3}$O$_{4}$-M (M = Al, Ti) systems, where pure metals are used as reducing agents. It is found that composite powders in which $Al_{2}$O$_{3}$ and TiO$_{2}$ are dispersed in $\alpha$-Fe matrix with nano-sized grains are obtained by mechanical alloying of Fe$_{3}$O$_{4}$ with Al and Ti for 25 and 75 hours, respectively. It is suggested that the large negative heat associated with the chemical reduction of magnetite by aluminum is responsible for the shorter MA time for composite powder formation in Fe$_{3}$O$_{4}$-Al system. X-ray diffraction results show that the reduction of magnetite by Al and Ti if a relatively simple reaction, involving one intermediate phase of FeAl$_{2}$O$_{4}$ or Fe$_{3}$Ti$_{3}$O$_{10}$. The average grain size of $\alpha$-Fe in Fe-TiO$_{2}$ composite powders is in the range of 30 nm. From magnetic measurement, we can also obtain indirect information about the details of the solid-state reduction process during MA.

Effect of Specific urface Area on the Gas Sensitive Properties (${\gamma}$-$Fe_2O_3$ 세라믹 가스감지소자;비표면이 가스감응성에 미치는 영향)

  • 신장욱;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.5
    • /
    • pp.1-8
    • /
    • 1986
  • This paper is concerned with a gas sensor composed of semi-conducting ${\gamma}$-$Fe_2O_3$ ceramics made by oxidizing $Fe_2O_3$ sintered body. Acicular $\alpha$-FeOOH powder prepared by precipitation of $FeSO_4$.$7H_2O$ solution was transformed to $FeSO_4$ sintered at 700$^{\circ}$-850$^{\circ}$C for 1 hr. and then oxidized to ${\gamma}$-$Fe_2O_3$ The gas sensitive properties of ${\gamma}$-$Fe_2O_3$ ceramic bodies based on the lectrical resistance change was measured in 0.5-2 vol% $H_2$ and $C_2$ $H_2$ gas at 35$0^{\circ}C$ The specific surface area of sintered specimen largely dependent on the sintering temperature and grain shape directly affected the gas sensitive pro-perties of ${\gamma}$-$Fe_2O_3$gas sensor. Specimens having larger specific surface area showed better sensitivity which means the electrical resistance change due to oxidation and reduction process occurs on ly at the surface of grains microscopically in the ${\gamma}$-$Fe_2O_3$ceramics. Micropores made in $Fe_2O_3$ powder during dehydration of $\alpha$-FeOOH can not prompt the gas sensitive properties of sintered ${\gamma}$-$Fe_2O_3$ because they are sintered or closed in the grains during sintering process and dose not affect the specific surface area of sintered body.

  • PDF

Characterization of Oxide Scales Formed on Fe3Al, Fe3Al-Cr, Fe3Al-Cr-Mo, Ni3Al and Ni3Al-Cr Alloys (Fe3Al, Fe3Al-Cr, Fe3Al-Cr-Mo, Ni3Al 및 Ni3Al-Cr 합금표면에 형성된 산화물 특성분석)

  • Shim, Woung-Shik;Lee, Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.845-849
    • /
    • 2002
  • Alloys of $Fe_3$Al, $Fe_3$Al-6Cr, $Fe_3$Al-4Cr-1Mo, $Ni_3$Al, and $Ni_3$Al-2.8Cr were oxidized at $1000^{\circ}C$ in air, and the oxide scales formed were studied using XRD. SEM, EPMA, and TEM. The oxide scales that formed on $Fe_3$Al-based alloys consisted primarily of $\alpha$-$Al_2$$O_3$ containing a small amount of dissolved Fe and Cr ions, whereas those that formed on $Ni_3$Al-based alloys consisted primarily of $\alpha$-$Al_2$$O_3$, together with a small amount of $NiAl_2$$O_4$, NiO and dissolved Cr ions. For the entire alloys tested, nonadherent oxide scales formed, and voids were inevitably existed at the scale-matrix interface.

Growth of Oriented Thick Films of BaFe12O19 by Reactive Diffusion

  • Fisher, John G.;Vu, Hung;Farooq, Muhammad Umer
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.333-339
    • /
    • 2014
  • Single crystal growth of $BaFe_{12}O_{19}$ by the solid state crystal growth method was attempted. Seed crystals of ${\alpha}-Fe_2O_3$ were pressed into pellets of $BaFe_{12}O_{19}$ + 2 wt% $BaCO_3$ and heat-treated at temperatures between $1150^{\circ}C$ and $1250^{\circ}C$ for up to 100 hours. Instead of single crystal growth taking place on the seed crystal, BaO diffused into the seed crystal and reacted with it to form a polycrystalline reaction layer of $BaFe_{12}O_{19}$. The microstructure, chemical composition and structure of the reaction layer were studied using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), x-ray Diffraction (XRD) and micro-Raman scattering and confirmed to be that of $BaFe_{12}O_{19}$. XRD showed that the reaction layer shows a strong degree of orientation in the (h00)/(hk0) planes in the sample sintered at $1200^{\circ}C$. $BaFe_{12}O_{19}$ layers with a degree of orientation in the (hk0) planes could also be grown by heat-treating an ${\alpha}-Fe_2O_3$ seed crystal buried in $BaCO_3$ powder.