• 제목/요약/키워드: $\alpha$-SiC

검색결과 529건 처리시간 0.024초

Effect of Additive Amount on Microstructure and Fracture Toughness of SiC-TiC Composites

  • Min-Jin Kim;Young-Wook Kim;Wonjoong Kim;Hun-Jin Lim;Duk-Ho Cho
    • The Korean Journal of Ceramics
    • /
    • 제6권2호
    • /
    • pp.91-95
    • /
    • 2000
  • Powder mixtures of $\beta$-SiC-TiC in a weight ratio of 2:1 containing 5-20 wt% additives ($Al_2O_3$-$Y_2O_3$) were liquid-phase sintered at $1830^{\circ}C$ for 1h by hot-pressing and subsequently annealed at $1950^{\circ}C$ for 6h to enhance grain growth. The annealed specimens revealed a microstructure of \"in situ-toughened composite\" as a result of the $\beta$longrightarrow$\alpha$ phase transformation of SiC during annealing. The increase of the content of additives accelerated the growth of elongated $\alpha$-SiC grains with higher aspect ratio and improved fracture toughness. The fracture toughness of SiC-TiC composite containing 20 wt% additive was 6.2 MPa.$m^{1/2}$.2}$.

  • PDF

Al-Si 도금된 보론강과 Zn 도금된 DP강 TWB 레이저 용접부내의 Al-편석부 미세조직에 미치는 핫스탬핑 열처리의 영향 (Effect of Hot-stamping Heat Treatment on the Microstructure of Al-Segregated Zone in TWB Laser Joints of Al-Si-coated Boron Steel and Zn-coated DP Steel)

  • 정병훈;공종판;강정윤
    • 대한금속재료학회지
    • /
    • 제50권6호
    • /
    • pp.455-462
    • /
    • 2012
  • Al-Si coated boron steel and Zn coated DP steel plates were laser-welded to manufacture a Tailor Welded Blank (TWB) for a car body frame. Hot-stamping heat treatment ($900^{\circ}C$, 5 min) was applied to the TWB weld, and the microstructural change and transformation mechanism were investigated in the Al-rich area near the bond line of the Al-Si coated steel side. There was Al-rich area with a single phase, $Fe_3(Al,Si)$, which was transformed to ${\alpha}-Fe$ (Ferrite) after the heat treatment. It could be explained that the $Fe_3(Al,Si)$ phase was transformed to ${\alpha}-Fe$ during heat treatment at $900^{\circ}C$ for 5 min and the resultant ${\alpha}-Fe$ phase was not transformed by rapid cooling. Before the heat treatment, the microstructures around the $Fe_3(Al,Si)$ phase consisted of martensite, bainite and ${\alpha}-Fe$ while they were transformed to martensite and ${\delta}-Fe$ after the heat treatment. Due to the heat treatment, Al was diffused to the $Fe_3(Al,Si)$ and this resulted in an increase of Al content to 0.7 wt% around the Al-rich area. If the weld was held at $900^{\circ}C$ for 5 min it was transformed to a mixture of austenite (${\gamma}$) and ${\delta}-Fe$, and only ${\gamma}$ was transformed to the martensite by water cooling while the ${\delta}-Fe$ was remained unchanged.

Characteristic X-ray Spectrum Analysis of Micro-Sized SiC

  • Miyoshi, Noriko;Mao, Weiji;Era, Hidenori;Shimozaki, Toshitada;Shinozaki, Nobuya
    • Applied Microscopy
    • /
    • 제46권1호
    • /
    • pp.27-31
    • /
    • 2016
  • It has been investigated what kind of characteristic X-ray in electron probe micro-analyzer (EPMA) is effective for the determination of compounds of Si series materials. After comparing the characteristic X-rays among the primary and secondary lines in $K_{\alpha}$ and $K_{\beta}$ obtained from the Si series standard samples, it was found that the secondary line of $K_{\alpha}$ exhibited the most informative spectrum although the intensity was considerably weak. As a result of analyzing the spectrum shapes of the Si series standard samples, the spectrum shape of the secondary line of $K_{\alpha}$ for SiC was different from those for other Si compounds. To grasp the characteristics of the shape, a line was perpendicularly drawn from the peak top to base line in order to divide a spectrum into two areas. The area ratio of right to left was defined to call as the asymmetry index here. As a result, the asymmetry index value of the SiC was greater than one, while those of other Si compounds were less than one. It was found from the EPMA analysis that identification of SiC became successful to distinguish from other Si compounds and this method was applicable for micro-sized compounds in a practical composite material.

$\alpha$-$\beta$ SiAlON의 미세구조 형성과 특성 (Microstructure Formation and mechanical Properties of $\alpha$-$\beta$)

  • 최민호;김득중
    • 한국세라믹학회지
    • /
    • 제33권2호
    • /
    • pp.169-176
    • /
    • 1996
  • The specimens which were prepared from $\alpha$-Si3N4 with additions of YAG(3Y2O3.5Al2O3)-10 wt% and various AlN contents were sintered in N2 atmosphere at 1$700^{\circ}C$ The effect of $\alpha$,$\beta$-solid solution contents and sintering time on mechanical properties were investigated. As the content of $\beta$-solid solution and sintering time increased the hardness is reduced but the hardness of specimen sintered over 10 hours is constant irrespective of sintering time. While the fracture toughness increased with increasing of $\beta$-solid solution and sintering time. The fracture toughness of specimen with 80% $\beta$-solid solution content increased from 3.89 to 6.66 MPam1/2 with sintering sintering up to 20 hours/ But the amount of increased fracture toughness of specimen with below 20% $\beta$-solid solution content is not significant.

  • PDF

절연용 실리콘 고무의 열자격 전류에 미치는 $SiO_2$의 영향 (The Effect of $SiO_2$ Affect to Thermally Stimulated Current of Insulating Silicone Rubbers)

  • 이성일
    • 한국안전학회지
    • /
    • 제11권2호
    • /
    • pp.60-66
    • /
    • 1996
  • In order to look into the internal structure and electrical properties of insulating Silicone rubbers added reinforcing fillers ; Silica(0-140 phr ), and to examine the behavior of charged particles, and the properties of thermally stimulated current (TSC) are investigated, respectively. From the TSC which are formed by applying the electric field of 2~5 ㎸/mm to specimen at temperature range from -150 to $270^{\circ}C$, the results arp as following. In the case of non-filled specimen, four peaks of $\delta$, $\gamma$ , $\beta$ and u are obtained at the temperature of $-120^{\circ}C$, $-60^{\circ}C$, $20^{\circ}C$ and $130^{\circ}C$, respectively and the case of filled specimen, three peaks of $\delta$, ${\alpha}_2$ and ${\alpha}_1$ are observed at the temperature of of $-120^{\circ}C$, $80^{\circ}C$ and $130^{\circ}C$, respectively. The origins of these peaks are that, the $\delta$ peak seems to the result from the contribution of side chain methyl radical, and the $\beta$ peak from the depolarization of space charge polarization owing to added imputity during during manufacturing specimens, and the $\beta$ peak from the orientation of $Si-CH_3$dipole, and the ${\alpha}_2$ near the temperature of $130^{\circ}C$ from carboxyl acid that is formed by the thermal oxidation of high temperature.

  • PDF

무가압소결한 $\beta$-SiC-$ZrB_2$계 도전성 복합체의 제조 및 기계적, 전기적 특성 (Mechanical, Electrical Properties and Manufacture of the $\beta$-SiC-$ZrB_2$ Electroconductive Ceramic Composites by Pressureless Sintering)

  • 신용덕;권주성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권2호
    • /
    • pp.98-103
    • /
    • 1999
  • The effect of $Al_2O_3$ additives to $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composites by pressureless sintering on microstructural, mechanical and electrical properties were investigated. The $\beta-SiC+39vol.%ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_2O_3$ powder as a liquid forming additives at $1950^{\cire}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha-SiC(6H), ZrB_2$ and weakly $\alpha-SiC(4H), \beta-SiC (15R)$ phase. The relative density of composites was lowered by gaseous products of the result of reaction between \beta-SiC and Al_2O_3$, therefore, porosity was increased with increasing $Al_2O_3$ contents, and showed the maximum value of 1.4197MPa.$m^{1/2}$ for composite with 4wt.% $Al_2O_3$ additives. The electrical resistivity of $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composite was increased with increasing $Al_2O_3$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\cire}C$ to $700^{\cire}C$.

  • PDF

폐알루미늄캔과 신지금으로 제조된 캔용 알루미늄 합금의 미세조직 (Microstructure of Aluminum Can Body Alloys produced by Recycled UBC and Virgin Aluminum)

  • 임차용;강석봉
    • 자원리싸이클링
    • /
    • 제11권6호
    • /
    • pp.31-37
    • /
    • 2002
  • 폐알루미늄 캔으로 제조된 2차지금과 신지금의 혼합비율에 따라 캔용 소재를 주조하고 미세조직을 조사하였다. 또한 주조후 열처리에 따른 상변화의 거동을 조사하였다. 2차지금의 혼합비율(20, 30, 40, 50, 60%)에 따라 캔용 소재를 전기로로 용해하고, ceramic filter를 사용하여 주조하였다. 주조후에는 주조조직 제어를 위해 균질화 열처리($615^{\circ}C$$\times$10hrs)를 하였다. 주조상태에서는 $\alpha$ 상($Al_{12}$ $(Fe,Mn)_3$Si), $\beta$상($Al_{6}$/(Fe,Mn)), 그리고 미세한 $Mg_2$Si상이 알루미늄 기지에 존재하며, 특히 가공성에 나쁜 영향을 미치는 것으로 알려진 $\beta$상이 많이 존재하였다. 그러나 균질화 열처리에 의해 이러한 $\beta$상은 유해성이 없는 $\alpha$상으로의 상변태가 일어났다. 기지내의 미세한 $Mg_2$Si상도 열처리에 의해 $\alpha$상으로 변화하였다. 주조시 여과된 조직을 분석한 결과 Fe, Cu, Si 등의 금속간화합물이 검출되었다.

Rheed 반점강도의 변화를 이용한 Si(111)-Ad 표면조사 (The study of Si(111)Au surface by variation of RHEED spot intensity)

  • 곽호원;이의완;이상윤
    • 한국재료학회지
    • /
    • 제4권6호
    • /
    • pp.638-643
    • /
    • 1994
  • Si(111)표면위에 Au의 증착량과 기판온도에 따른 표면구조의 변화를 RHEED(Reflection High Energy Electron Diffraction)상(pattern)과 RHEED상의 회절반점(spot)강도변화를 이용하여 조사하였다. Si(111) $7\times7$구조를 Au 를 0.1ML-0.4ML증착후에 기판을 $350^{\circ}C$-$750^{\circ}C$로 수초간 가열하면 $7\times7$구조에서 $7\times7$ + $5\times2$의 혼합 구조로 변화하였으며 증착량 0.4ML-1.0ML에서는 RHEED상이 기판온도와 증착량에 따라 $5\times2,\alpha- \sqrt{3} \times \sqrt{3},\beta- \sqrt{3} \times \sqrt{3}$의 구조들이 관찰되었다. $6\times6$구조는 기판온도 $270^{\circ}C$-$370^{\circ}C$에서 증착량 0.8ML에서부터 형성되기 시작하여 1ML에서 완성되었다. AES(Auger Electron Spectroscopy)를 이용한 $\alpha- \sqrt{3} \times \sqrt{3},5 \times 2$구조에서의 Au원자의 이탈과정 조사에서 이탈 에너지는 각각 79kcal/mol, 82kcal/mol로 조사되었다.

  • PDF

무가압소결(無加壓燒結)한 ${\beta}-SiC-ZrB_2$ 복합체(複合體)의 파괴인성(破壞忍性)과 전기전도성(電氣傳導性)에 미치는 기공(氣孔)의 영향 (Effect of Porosity on the Fracture Toughness and Electrical Conductivity of Pressureless Sintered ${\beta}-SiC-ZrB_2$ Composites)

  • 신용덕;권주성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.847-849
    • /
    • 1998
  • The effect of $Al_{2}O_{3}$ additives on the microstructure, mechanical and electrical properties of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites by pressureless sintering were investigated. The ${\beta}$-SiC+39vol.%$ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_{2}O_{3}$ powder as a liquid forming additives at $1950^{\circ}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and weakly $\alpha$-SiC(4H), $\beta$-SiC(15R) phase. The relative density of composites was lowered by gaseous products of the result of reaction between $\beta$-SiC and $Al_{2}O_{3}$ therefore, porosity was increased with increased $Al_{2}O_{3}$ contents. The fracture toughness of composites was decreased with increased $Al_{2}O_{3}$ contents, and showed the maximum value of $1.4197MPa{\cdot}m^{1/2}$ for composite added with 4wt.% $Al_{2}O_{3}$ additives. The electrical resistivity of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composite was increased with increased $Al_{2}O_{3}$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

용탕단조법에 의한 휘스커강화 Al합금기 복합재료의 고속초소성 (High Strain Rate Superplasticity of Whisker Reinforced Aluminum Alloy Matrix Composites Fabricated by Squeeze Casting)

  • 임석원;유전의칙
    • 한국주조공학회지
    • /
    • 제21권6호
    • /
    • pp.359-365
    • /
    • 2001
  • The superplastic behavior of whisker reinforced aluminum alloy matrix composites fabricated by squeeze casting as one of high pressure routes was investigated. The preforms of ${\alpha}-Si_3N_4$ and ${\beta}-SiC$ whiskers without any binder as a reinforcement were used. The matrix materials were 2024 and 7075 aluminum alloys. For the purpose of optimum superplastic condition, respectively, the whiskers volume fraction, extrusion temperature, tensile test temperature and initial strain rate were changed. Fracture surface of tested specimens were observed by SEM. By the results, it became possible to produce superplastic composites by applying only a hot extrusion process to composites obtained by the squeeze casting. The superplastic composites developed are ${\alpha}-Si_3N_4w/7075$, ${\alpha}-Si_3N_4w/2024$ and ${\beta}-SiCw/2024$ systems at high strain rate.

  • PDF