• Title/Summary/Keyword: $\alpha$-SiC

Search Result 529, Processing Time 0.026 seconds

Electrical Conductive Mechanism of Hot-pressed $\alpha-SiC-ZrB_2$ Composites (고온가압소결한 $\alpha-SiC-ZrB_2$ 복합체의 전기전도기구)

  • Shin, Yong-Deok;Ju, Jin-Young;Kwon, Ju-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.104-108
    • /
    • 1999
  • The electrical conductive mechanism and temperature dependence of electrical resistivity of $\alpha-SiC-ZrB_2$ composites with $ZrB_2$ contents were investigated. The electrical resistivity of hot-pressed composites was measured by the Pauw method form $25^{\circ} to 700^{\circ}C$. The electrical resistivity of the composites follow the electrical conduction model for a homogeneous mixture of two kind of particles with different conductivity. Also, the electrical resistivity versus temperature curves indicate the formation of local chains of $ZrB_2$ particles. In case of $\alpha-SiC-ZrB_2$ composites containing above 39vol.% $ZrB_2$ showed positive temperature coefficient resistance(PTCR), whereas the electrical resistivity of $\alpha-SiC-21vol.% ZrB_2$ showed negative temperature coefficient resistance(NTCR).

  • PDF

Synthesis of Si-Al Carbonates from Kaolin and Sintering Characteristics by Reaction Bonding Si3N4 (카올린으로부터 Si-Al 탄화물의 합성 및 Si$_3$N$_4$ 결합 소결 특성)

  • Baik, Yong-Hyuck;Kim, Young-ku;Han, Chang;Kwon, Yang-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.9
    • /
    • pp.667-674
    • /
    • 1991
  • In this study, Kaolin was carbonized at 1300~175$0^{\circ}C$ and its constituent mineral change was investigated. Carbonized kaolin at 1$650^{\circ}C$ was mixed with metallic silicon, formed and nitrified at 135$0^{\circ}C$ in N2-NH3 atmosphere. Properties of this product such as porosity, bulk density, MOR, nitrization rate and oxidation resistence were measured, and its mineralogical changes were investigated by XRD. The results were as follows; 1) $\beta$-SiC was initially synthesized at 150$0^{\circ}C$, and its amount was continuously increased with reaction temperature to 1$700^{\circ}C$. 2) At 1$600^{\circ}C$, mullite was rapidly decomposed and the amounts of $\beta$-SiC and $\alpha$-Al2O3 were increased simultaneously. 3) By adding alkali to kaolin, the decomposition temperature of mullite was dropped approximately 10$0^{\circ}C$, but the amount of $\alpha$-SiC was increased. 4) The highest values of their nitrization rate and MOR were obtained at the specimen of 35 wt% metallic silicon in nitrization reaction. 5) It seems that increment of $\alpha$-Si3N4 and $\alpha$-Al2O3 phase during nitrization was due to the decomposition of Al4SiC4 existed in carbonized kaolin. 6) Si3N4 bonded SiC-Al2O3 composite were fabricated from kaolin at relatively low temperature (135$0^{\circ}C$).

  • PDF

Solid-state reaction kinetics for the formation of mullite($3Al_2O_3{\cdot}2SiO_2$) from amorphous $SiO_2$ and ${alpha}-Al_2O_3$ (비정질 $SiO_2$${alpha}-Al_2O_3$부터 Mullite를 합성하기 위한 고체상태 반응속도)

  • 김익진;곽효섭;고영신
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.332-341
    • /
    • 1998
  • Reaction kinetics for the solid - state reaction of ${\alpha}-Al_2O_3$with amorphous $SiO_2$to produce mullite ($3Al_2O_3;{cdot};2SiO_2$) was studied in the temperature range of 1450~$1480^{\circ}C$. Rate of kinetic reaction were determined by using $SiO_2$- coated $Al_2O_3$ compact containing 28.16 wt.% $SiO_2$and heating the reactant mixtures in MgO at definite temperature for various times. Amount of products and unreacted reactants were determined by X-ray diffractometry. Data from the volume fraction and ratio of peak intensities of mullite indicated that the reaction of ${\alpha}-;Al_2O_3$ with $SiO_2$to form $3Al_2O_3\;{\cdot}\;2SiO_2$ start between 1450 and $1480^{\circ}C$. The activation energy for solid-state reaction was determined by using the Arrhenius equation; The activation energy was 31.9 kJ/mol.

  • PDF

Properties of $SiC/MoSi_2$ Composites Prepared by Reaction Sintering Method (반응소결에 의한 $SiC/MoSi_2$ 복합체의 특성)

  • 한인섭;양준환;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.399-406
    • /
    • 1994
  • The SiC/MoSi2 composite material was prepared by infiltration with the mixture of metal Si and MoSi2 into the preform of $\alpha$-SiC and graphite under the vacuum atmosphere of 10-1 torr. The mechanical properties, phases and microstructural characteristics have been investigated by employing an universal testing machine, scanning electron microscope and X-ray diffractometer. With the increase of MoSi2/Si mixing content, the quantity of the residual silicon phase was decreased and the hardness and fracture toughness of composite materials were increased. Also, as the infiltration temperature increased, a lot of fine-grained $\beta$-SiC phases, which were produced from the reaction of graphite and liquid silicon melt, were transformed to $\alpha$-SiC phases.

  • PDF

Phase and microstructure of hot-pressed SiC-AlN solid solutions (열간가압소결에 의한 SiC-AIN 고용체의 상 및 미세구조)

  • Chang-Sung Lim;Chang-Sam Kim;Deock-Soo Cheong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.238-246
    • /
    • 1996
  • High-density SiC-AIN solid solutions were fabricated from powder mixtures of $\beta$-SiC and AIN by hot-pressing in the 1870 to $2030^{\circ}C$ temperature range. The reaction of AIN and $\beta$-SiC (3C) powder transformed to the 2 H (wurzite) structure appeared to depend on the temperature and SiC/A1N ratio and seeds present. The crystalline phases consisted of a SiC-rich solid-solution phase and an A1N-rich solid-solution phase. At $2030^{\circ}C$ for 1 h, for a composition of 50 % AIN/50 % SiC with a seeding of $\alpha$-SiC, the complete solid solution could be obtained and the microstructures are equiaxed with a relatively homogeneous grain size of 2 H phases. The variation of the seeding of $\alpha$-SiC in SIC-A1N solid solutions could be attributed to the transformation behaviour and differences in size and shape of the grains, as well as to other factors, such as grain size distributions, compositional inhomogeneity, and structural defects.

  • PDF

Phase Transformation and Mechanical Properties on Sintering Temperature of $\alpha$-SiC Manufactured by Pressureless Sintering ($\beta$-SiC의 상압소결시 소결온도에 따른 상전이와 기계적 특성 변화)

  • Ju, Jin-Young;Shin, Yong-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1433-1435
    • /
    • 2001
  • The mechanical and phase transformation of the cold isostatically pressed $\beta$-SiC ceramic were investigated as a function of the sintering temperature. The result of phase analysis revealed 6H, 4H, 3C and phase transformation between 3C and 4H showed over 2000$^{\circ}C$ and the $\beta$ ${\rightarrow}$ $\alpha$ phase transformation was in saturation at 2200$^{\circ}C$. The relative density and the mechanical properties of $\alpha$-SiC ceramic was increased with increased sintering temperature. The flexural strength showed the highest value of 230 MPa at 2200$^{\circ}C$. This reason is because crack was propagated through surface flaw. The fracture toughness showed the highest value of 4.2 $MPa{\cdot}m^{1/2}$ at 2200$^{\circ}C$.

  • PDF

Growth of Elongated Grains in $\alpha$'-Sialon Ceramics ($\alpha$'-Sialon 세라믹스에서의 주상형 입자성장)

  • 신익현
    • Journal of Powder Materials
    • /
    • v.6 no.3
    • /
    • pp.246-250
    • /
    • 1999
  • The effects of the ${\beta}-Si_3N_4$ starting particle size and $\alpha$/$\beta$ phase transformation during sintering process on the microstructure evolution of Yttrium $\alpha$-Sialon ceramics were investigated. As-received ${\beta}-Si_3N_4$ powder (mean particle size: 0.54$\mu$m) and classified ${\beta}-Si_3N_4$ powder(mean particle size: $0.26\mu{m}$) were used as starting powders. With decreasing the starting particle size, the growth of elongated grains was enhanced, which resulted in the whisker -like microstructure with elongated grains. These results were discussed in relation to the two-dimensional nucleation and growth theory. In the specimen heat treated at $1600^{\circ}C$ for 10h before sintering at $1950^{\circ}C$for 1h under 40atm(2-step sintering), the grain size was smaller than of the 1-step sintering at 195$0^{\circ}C$ for 1h. However, bimodal microstructure evolution were not not remarkable in both sample, which is ascribed to the $\alpha$-phase contents existing in ${\beta}-Si_3N_4$ starting powder.

  • PDF

The Effect of Nitride Coating on SiC Platelet in $Al_2O_3/SiC$ Hybrid-Composite ($Al_2O_3/SiC$ Hybrid-Composite에서 SiC에 질화물 코팅의 영향)

  • 이수영;임경호;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.406-412
    • /
    • 1997
  • Al2O3/SiC hybrid-composite has been fabricated by the conventional powder process. The addition of $\alpha$-Al2O3 as seed particles in the transformation of ${\gamma}$-Al2O3 to $\alpha$-Al2O3 provided a homogeneity of the microstructure. The grain growth of Al2O3 are significantly surpressed by the addition of nano-size SiC particles. Dislocation were produced due to the difference of thermal expansion coefficient between Al2O3 and SiC and piled up on SiC particles in Al2O3 matrix, resulting in transgranular fracture. The high fracture strength of the composite was contributed to the grain refinement and the transgranular fracture mode. The addition of SiC platelets to Al2O3/SiC nano-composite decreased the fracture strength, but increased the fracture toughness. Coated SiC platelets with nitrides such as BN and Si3N4 enhanced fracture toughness much more than non-coated SiC platelets by enhancing crack deflection.

  • PDF

Role of ${\alpha}-Al_2O_3$ buffer layer in $Ba-ferrite/SiO$ magnetic thin films (Ba-페라이트/$SiO_2$ 자성박막에서 ${\alpha}-Al_2O_3$ buffer 층의 역할)

  • Cho, Tae-Sik;Jeong, Ji-Wook;Kwon, Ho-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.267-270
    • /
    • 2003
  • We have studied the interfacial diffusion phenomena and the role of ${\alpha}-Al_2O_3$ buffer layer as a diffusion barrier in the $Ba-ferrite/SiO_2$ magnetic thin films for high-density recording media. In the interface of amorphous Ba-ferrite ($1900-{\AA}-thick)/SiO_2$ thin film during annealing, the interfacial diffusion started to occur at ${\sim}700^{\circ}C$. As the annealing temperature increased up to $800^{\circ}C$, the interfacial diffusion abruptly proceeded resulting in the high interface roughness and the deterioration of the magnetic properties. In order to control the interfacial diffusion at the high temperature, we introduced ${\alpha}-Al_2O_3$ buffer layer ($110-{\AA}-thick$) in the interface of $Ba-ferrite/SiO_2$ thin film. During the annealing of $Ba-ferrite/{\alpha}-Al_2O_3/SiO_2$ thin film even at ${\sim}800^{\circ}C$, the interface was very smooth. The smooth interface of the film was also clearly shown by the cross-sectional FESEM. The magnetic properties, such as saturation magnetization 3nd intrinsic coercivity, were also enhanced, due to the inhibition of interfacial diffusion by the ${\alpha}-Al_2O_3$ buffer layer. Our study suggests that the ${\alpha}-Al_2O_3$ buffer layer act as a useful interfacial diffusion barrier in the $Ba-ferrite/SiO_2$ thin films.

  • PDF

Mechanical Properties of Silicon Carbide-Silicon Nitride Composites Sintered with Yttrium Aluminum Garnet (YAG상 첨가 탄화규소-질화규소 복합재료의 기계적 특성)

  • 이영일;김영욱;최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.799-804
    • /
    • 1999
  • Composites of SiC-Si3N4 consisted of uniformly distributed elongated $\beta$-Si3N4 grains and equiaxed $\beta$-SiC grains were fabricated with $\beta$-SiC,. $\alpha$-Si3N4 Al2O3 and Y2O3 powders. By hot-pressing and subsequent annelaing elongated $\beta$-Si3N4 grains were grown via$\alpha$longrightarrow$\beta$ phase transformation and equiaxed $\beta$-Si3N4 composites increased with increasing the Si3N4 content owing to the reduced defect size and enhanced crack deflection by elongated $\beta$-Si3N4 grains and the grain boundary strengthening by nitrogen incorporation. Typical flexural strength and fracture toughness of SiC-40 wt% Si3N4 composites were 783 MPa and 4.2 MPa.m1/2 respectively.

  • PDF