• Title/Summary/Keyword: $\alpha$-SiAlON

Search Result 201, Processing Time 0.026 seconds

Microstructure and Mechanical Properties of Solution Treatment and Sr-Modification of Al-12%Si-1.5%Cu Alloy

  • Surin, Prayoon;Wong on, Jessada;Eidhed, Krittee
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.132-137
    • /
    • 2015
  • The purpose of this paper was to investigate the effects of solution treatment time and Sr-modification on the microstructure and property of the Al-Si piston alloy. It was found that as-cast microstructures of unmodified and Sr-modified Al-Si alloys consisted of a coarse acicular plate of eutectic Si, $Cu_3NiAl_6$ and $Mg_2Si$ phases in the ${\alpha}$-Al matrix but different in size and morphology. Both size and inter-particle spacing of Si particles were significantly changed by increasing of the solution treatment time. After a short solution treatment, the coarse acicular plate of the eutectic Si appears to be fragmented. Fully modified microstructure of Sr-modified alloy can reduce the solution treatment time to shorter compared to unmodified alloy. The maximum of a peak hardness value is found in the very short solution treatment of both Al-Si piston alloys. Compared to 10 h solution treatment, the solution treatment of 2-4 h is sufficient to achieve appropriate microstructures and hardness. The short solution treatment is very useful to increase the productivity and to reduce the manufacturing cost of the Al-Si piston alloys.

Charactrerization of microstructure, hardness and oxidation behavior of carbon steels hot dipped in Al and Al-1% Si molten baths (Al과 Al-1% Si 용융조에서 용융 도금된 탄소강의 경도, 산화 및 미세조직의 특성)

  • Hwang, Yeon-Sang;Won, Seong-Bin;Chunyu, Xu;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.109-110
    • /
    • 2013
  • Medium carbon steel was aluminized by hot dipping into molten Al or Al-1%Si baths. After hot-dipping in these baths, a thin Al-rich topcoat and a thick alloy layer rich in $Al_5Fe_2$ formed on the surface. A small a mount of FeAl and $Al_3Fe$ was incorporated in the alloy layer. Silicon from the Al-1%Si bath was uniformly distributed throughout the entire coating. The hot dipping increased the microhardness of the steel by about 8 times. Heating at $700-1000^{\circ}C$ however decreased the microhardness through interdiffusion between the coating and the substrate. The oxidation at $700-1000^{\circ}C$ in air formed a thin protective ${\alpha}-Al_2O_3$ layer, which provided good oxidation resistance. Silicon was oxidized to amorphous silica, exhibiting a glassy oxide surface.

  • PDF

High Temperature Deformation Behavior of $SiC_p/Al-Si$ Composites ($SiC_p/Al-Si$ 복합재료의 고온변형 특성)

  • 전정식;고병철;김명호;유연철
    • Transactions of Materials Processing
    • /
    • v.3 no.4
    • /
    • pp.427-439
    • /
    • 1994
  • The high temperature deformation behavior of $SiC_p/Al-Si$ composites and Al-Si matrix was studied by hot torsion test in a range of temperature from $270^{\circ}C$ to $520^{\circ}C$ and at strain rate range of $1.2{\times}10_{-3}~2.16{\times}10_{-1}/sec$. The hot restoration mechanisms for both matrix and composites were found to be dynamic recrystallization(DRX) from the investigation of flow curves and microstructural evolutions. The Si precipitates and SiC particles promoted DRX, and the peak strain$({\varepsilon}_p)$ of the composites was smaller than that of the matrix. Flow stresses of $SiC_p/Al-Si$ composites were found to be generally higher than the matrix, but the difference was quite small at higher temperature due to the decrease of capability of load transfer by SiC particles. With increasing temperature, failure strain of matrix and composites are inclined to increase, the increasing value of failure strain for the $SiC_p/Al-Si$ composites was small compared to that of matrix. The stress dependence of both materials on strain rate() and temperature(T) was examined by hyperbolic sine law, $\.{\varepsilon}=A_1[sinh({\alpha}{\cdot}{\sigma})]_n$exp(-Q/RT)

  • PDF

Synthesis of Extremely Fine Fe-6Al-9Si Alloy Powders by Chemical-Mechanical Hybrid Process (화학적-기계적 혼성공정에 의한 초미세 Fe-6Al-9Si 합금분말의 합성)

  • Yoon Jong Woon;Lee Kee-Sun
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.166-171
    • /
    • 2005
  • Fe-6Al-9Si(N) alloy powders were synthesized by hybrid process of chemical nitrification and mechanical milling. The nitriding treatment on Fe-6Al-9Si alloy powders formed $\gamma'-Fe_4N$ phase on the powders surface. The nitriding-treated powders were pulverized by horizontal high-energy ball milling machine. The longer ball milling time tended to reduce the size of alloy powders. In ball milling for 36h, extremely fine powders with about $7\~9wt\%$ nitrogen were obtained. Through X-ray diffraction analysis on the powders, it was found out that the longer milling time caused a disappearance of the crystallinity of $\alpha-Fe$ in the powders. TEM study confirmed that the powders is comprised of a few tens nano-meter sized crystals, including $\alpha-Fe$ phase with partially $\gamma'-Fe_4N$ phase. Hysteresis curves of the synthesized powders measured by VSM revealed lower saturation magnetization and higher coercivity, which seemed to be attributed to nitrogen-impregnation and severe residual stress developed during the high energy milling. Microstructure observation on the powder annealed at 873 K for 1 h showed 10 to 20 nm sized $\alpha-Fe$ crystal. Such a enhanced crystallinity significantly increased the magnetization and decreased the coercivity, which was attributed to not only the crystallinity but also residual stress relaxation.

Formation of $Al_2O_3$-Ceramics by Reactive Infiltration of Al-alloy into Insulation Fiber Board (Al-합금의 단열섬유판 반응침투에 의한 $Al_2O_3$-세라믹스의 형성)

  • 김일수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.483-490
    • /
    • 1997
  • Al2O3/metal composites were fabricated by oxidation and reaction of molten Al-alloy into two types of commercial Al2O3-SiO2 fibrous insulation board. The growth rate, composition and microstructure of these materials were described. An AlZnMg(7075) alloy was selected as a parent alloy. Mixed polycrystalline fiber and glass phase fiber were used as a filler. The growth surface of an alloy was covered with and without SiO2. SiO2 powder was employed as a surface dopant to aid initial oxidation of Al-alloy. Al-alloy, SiO2, fiber block and growth inhibitor CaSiO3 were packed sequentially in a alumina crucible and oxidized in air at temperature range 90$0^{\circ}C$ to 120$0^{\circ}C$. The growth rate of composite layer was calculated by measuring the mass increasement(g) per unit surface($\textrm{cm}^2$). XRD and optical microscope were used to investigate the composition and phase of composites. The composite grown at 120$0^{\circ}C$ and with SiO2 dopant showed rapid growth rate. The growth behavior differed a little depending on the types of fiber used. The composites consist of $\alpha$-Al2O3, Al, Si and pore. The composite grown at 100$0^{\circ}C$ exhibited better microstructure compared to that grown at 120$0^{\circ}C$.

  • PDF

Synthesis and Optical Properties of M-Si(Al)-O-N (M: Sr, Ca) Phosphors for white Light Emitting Diodes (백색 발광다이오드용 M-Si(Al)-O-N (M: Sr, Ca) 형광체의 합성 및 발광 특성)

  • Lee, Seung-Jae;Lee, Jun-Seong;Kim, Young-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.41-45
    • /
    • 2012
  • Oxynitride green phosphors for white light emitting diodes (LEDs) were synthesized and their optical properties were evaluated. The N/O ratio ($\delta$) of $SrSi_2O_{2-{\delta}}N_{2+2/3{\delta}}:Eu^{2+}$ closely depended on the synthesizing conditions. The most excellent green emission (545 nm), which was assigned to the $5d{\rightarrow}4f$ transition of $Eu^{2+}$ ions, was achieved at the conditions of $1700^{\circ}C$, 5 mol% $Eu^{2+}$, and $H_2$ atmosphere. The well-developed $Ca-{\alpha}-SiAlON:Yb^{2+}$ particles with homogeneous size were obtained at m = 3 (n = 0.15) for the compound of $Ca_{0.5m-0.005}Yb_{0.005}Si_{12-(m+n)}Al_{m+n}O_nN_{16-n}$, resulting in the strong green emission at around 550 nm.

Thermoelectric Conversion Characteristics of SiC Ceramics Fabricated from 6H-SiC Powder (6H-SiC로부터 제작한 SiC 세라믹스의 열전변환 특성)

  • ;Kunihito Koumoto;Hiroaki Yanagida
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.412-422
    • /
    • 1990
  • Porous SiC ceramics were proposed to be promising materials for high-temperature thermoelectric energy conversion. Throughthe thermoelectric property measurements and microstructure observations on the porous alpha SiC and the mixture of $\alpha$-and $\beta$-SiC, it was experimentally clarified that elimination of stacking faults and twin boundaries by grain growth is effective to increase the seebeck coefficient and increasing content of $\alpha$-SiC gives rise to lower electrical conductivity. Furthermore, the effects of additives on the thermoelectric properties of 6H-SiC ceramics were also studied. The electrical conductivity and the seebeck coefficient were measured at 35$0^{\circ}C$ to 105$0^{\circ}C$ in argon atmospehre. The thermoelectric conversion efficiency of $\alpha$-SiC ceramics was lower than that of $\beta$-SiC ceramics. The phase homogeneity would be needed to improve the seebeck coefficient and electrical conductivity decreased with increasing the content of $\alpha$-phase. In the case of B addition, XRD analysis showed that the phase transformation did not occur during sintering. On the other hand, AlN addiiton enhanced the reverse phase transformation from 6H-SiC to 4H-SiC, and this phenomenon had a great effect upon the electrical conductivity.

  • PDF

Influence of Sr and TiB on the Microstructure and Eutectic Temperature of Al-12Si Die-Cast Alloys (Sr과 TiB 첨가에 따른 다이캐스팅용 Al-Si 합금의 미세조직과 공정온도의 변화)

  • Choi, Yong-Lak;Kim, Seon-Hwa;Kim, Dong-Hyun;Yoon, Sang-Il;Kim, Ki-Sun
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.544-551
    • /
    • 2017
  • In order to develop a new commercial Al-12%Si casting alloy with improved physical properties, we investigated the effect of adding Sr and TiB to the alloy. Al-12%Si alloys were prepared by die casting at $660^{\circ}C$. The eutectic temperature of the Sr-modified Al-12%Si alloy decreased to $9^{\circ}C$ and the mushy zone region increased. The shape of the Si phase changed from coarse acicula to fine fiber with the addition of Sr. The addition of TiB in the Al-12%Si alloy reduced the size of the primary ${\alpha}$-Al and eutectic Si phases. When Sr and TiB were added together, it worked more effectively in refinement and modification. The density of twins in the Si phase-doped Sr increased and the width of the twins was refined to 5 nm. These results are related to the impurity induced twinning(IIT) growth.

Effect of Various Supports on the Catalytic Performance of V-Sb Oxides in the Oxidative Dehydrogenation of sobutane (이소부탄의 산화탈수소반응에 대한 여러 담지체에 따른 V-Sb 산화물 촉매 성능 효과)

  • Shamilov, N.T.;Vislovskiy, V.P.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.81-85
    • /
    • 2011
  • $V_{0.9}Sb_{0.1}O_x$ systems, bulk and deposited on different supports (five types of $\gamma$-aluminas, $\alpha$-alumina, silica-alumina, silica gel, magnesium oxide), have been tested in the oxidative dehydrogenation (ODH) of iso-butane. Catalytic performance of VSb oxides has shown to be highly dependent on the support and the nature of the support decreasing in a series: $\gamma$-$Al_2O_3$ > $\alpha$-$Al_2O_3$ > Si-Al-O > $SiO_2$ $\approx$ MgO $\gg$ unsupported. Variation of the V-Sb-O-loading in the studied range of coverage (0.5-2 theoretical monolayer) only slightly influences the catalysts' activity and selectivity. The best catalytic performance of $\gamma$-alumina-supported $V_{0.9}Sb_{0.1}O_x$ systems can be explained by the optimal surface interaction between support and supported components resulting in the formation of well-spread amorphous active $VO_x$-component with vanadium in a high oxidation state.

Effect of Heat Treatment on the Mechanical Properties of a Ti-15Mo-3Nb-3Al-0.2Si Alloy (β-type Ti-14Mo-3Nb-3Al-0.2Si 합금의 열처리 조건에 따른 기계적 특성)

  • Kim, Tae Ho;Lee, Jun Hee;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • The mechanical properties of the various heat treatment conditions on Ti-15Mo-3Nb-3Al-0.2Si alloy plates were examined. XRD patterns from the surface of Ti-15Mo-3Nb-3Al-0.2Si were analyzed as a solution-treated Ti alloy has the single-phase ${\beta}$ structure whereas the aged Ti alloys have the ${\beta}$ matrix embedded with ${\alpha}$ needles. High strength (~1500 MPa) with decent ductility (7%) was obtained by the Ti alloy double aged at $300^{\circ}C$ and $520^{\circ}C$ for 8 hours each. The double-aged alloy exhibits the finer structure than the single-aged alloy at $300^{\circ}C$ for 8 hours because of the higher nucleation rate of ${\alpha}$ needles at an initial low aging temperature ($320^{\circ}C$). TEM observation revealed that the fine nanostructure with ${\alpha}$ needles in the ${\beta}$ matrix ensured the excellent mechanical properties in the double aged Ti-15Mo-3Nb-3Al-0.2Si alloy. In the solution treated alloy, the yield drop, stress-serrations and the ductility minimum typically associated with dynamic strain aging can be attributed to the dynamic interaction between dislocations and oxygen atoms. The yield drop and the stress serration were not observed in aged samples because the geometrically introduced dislocations due to phase precipitates suppressed the dynamic strain aging.