• Title/Summary/Keyword: $\alpha$-Mating factor

Search Result 27, Processing Time 0.02 seconds

Downstream Processing of Recombinant Hirudin Produced in Saccharomyces cerevisiae

  • Chung, Bong-Hyun;Kim, Won-Kyung;Rao, K.Jagannadha;Kim, Chul-Ho;Rhee, Sang-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.179-183
    • /
    • 1999
  • A recombinant form of hirudin, a potent thrombin-specific inhibitor derived from the bloodsucking leech, was expressed as a secretory product in Saccharomyces cerevisiae under the control of GALl0 promoter and the mating factor $\alpha$pre-pro leader sequence. In an attempt to produce recombinant hirudin (r-Hir) of therapeutic purity in large quantities, the fed-batch fermentation was carried out by using this recombinant yeast, and subsequently downstream processing was developed with the preparative-scale column chromatography systems. About 234 mg/l of biologically active r-Hir was produced as a secretory product by the fed-batch fermentation strategy developed for an efficient downstream processing. Using a two-step chromatography process (an anion exchange chromatography followed by the reverse phase HPLC), the r-Hir was purified to>98% with an overall recovery yield of 84%. According to the N-terminal amino acid sequencing, the purified r-Hir was found to have the predicted N-terminal amino acid sequence. The biological activity of the purified r-Hir to inhibit thrombin was also identical to that of the commercial hirudin.

  • PDF

Rapid Selection of Multiple Gene Integrant for the Production of Recombinant Hirudin in Hansenula polymorpha

  • Kim Hwa Young;Sohn Jung Hoon;Kim Chul Ho;Rao K. Jagannadha;Choi Eui Sung;Kim Myung Kuk;Rhee Sang Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • For the rapid selection of higher recombinant hirudin producing strain in a methylotrophic yeast Hansenula polymorpha, a multiple gene integration and dose-dependent selection vector, based on a telomere-associated ARS and a bacterial aminoglycoside 3-phosphotransferase (aph) gene, was adopted. Two hirudin expression cassettes (HV1 and HV2) were constructed using the MOX promoter of H. polymorpha and the mating factor $\alpha$ secretion signal of S. cerevisiae. Multiple integrants of a transforming vector containing hirudin expression cassettes were easily selected by using an antibiotic, G418. Hirudin expression level and integrated plasmid copy number of the tested transformants increased with increasing the concentration of G418 used for selection. The expression level of HV1 was consistently higher than that of HV2 under the similar conditions, suggesting that the gene context might be quite important for the high-level gene expression in H. polymorpha. The highest hirudin producing strain selected in this study produced over 96 mg/L of biologically active hirudin in a 500-mL flask and 165 mg/L in a 5-L fermentor.

  • PDF

DNA Replication is not Required in Re-establishment of HMRE Silencer Function at the HSP82 Yeast Heat Shock Locus

  • Lee, See-Woo;Gross, David S.
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.30-36
    • /
    • 1996
  • We have exmained the re-establishment of HIMRE mediated silencing function on the transcriptional activity of yeast heast shock gene HSP82. To test whether the onset of SIR repression can occur in growing cells in the rpesence of a potent inhibitor of DNA replication, HMRa/HSP82 strains with SIR4- and SIR4S$^{+}$ genetic backgrounds were arrested in S phase by incubation of a culture in 200 mM hydroxyurea for 120 min. It was clear that following a 20 minute heat shock, silencing of the HMRa/HSP82 allele in cells pretreated with hydroxyurea does occur in a SIR4-dependen fashion, even though the kinetics of repression appears to be substantially delayed. We also have tested whether re- establishement of silencing at the HMR/hsp82 locus can occur in G1-arrested cells. Cell cycle arrest at G1 phase was achieved by treatment of early log a cell cultures with .alpha.-factor mating pheromone, which induces G1 arrest. The result suggests that passage through S phase (and therefore DNA replication) is nor required for re-establishing silencer-mediated repression at the HMNRa/HSP82 locus. Finally, to test whether de nono protein synthesis is required for re-establishment of silencer-mediated repression, cells were pretreated with cycloheximide (500 /.mu.g/ml) 120 min. It was apparent that inhibiting protein synthesis delays, but does not prevent, re-establishment of silencer-mediated repression. Altogether, these results indicate that re-establishment of silencer-mediated repression is not dependent on the DNA replication and has no requirement for protein synthesis.s.

  • PDF

Secretory Expression System of Xylose Reductase (GRE3) for Optimal Production of Xylitol (Xylitol 생산에 최적화된 xylose reductase (GRE3)의 분비발현 시스템)

  • Jung, Hoe-Myung;Kim, Jae-Woon;Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1376-1382
    • /
    • 2016
  • Xylitol is widely used in the food and medical industry. It is produced by the reduction of xylose (lignocellulosic biomass) in the Saccharomyces cerevisiae strain, which is considered genetically safe. In this study, the expression system of the GRE3 (YHR104W) gene that encodes xylose reductase was constructed to efficiently produce xylitol in the S. cerevisiae strain, and the secretory production of xylose reductase was investigated. To select a suitable promoter for the expression of the GRE3 gene, pGMF-GRE3 and pAMF-GRE3 plasmid with GAL10 promoter and ADH1 promoter, respectively, were constructed. The mating factor ${\alpha}$ ($MF{\alpha}$) signal sequence was also connected to each promoter for secretory production. Each plasmid was transformed into S. cerevisiae $SEY2102{\Delta}trp1$, and $SEY2102{\Delta}trp1$/pGMF- GRE3 and $SEY2102{\Delta}trp1$/pAMF-GRE3 transformants were selected. In the $SEY2102{\Delta}trp1$/pGMF-GRE3 strain, the total activity of xylose reductase reached 0.34 unit/mg-protein when NADPH was used as a cofactor; this activity was 1.5 fold higher than that in $SEY2102{\Delta}trp1$/pAMF-GRE3 with ADH1 as the promoter. The secretion efficiency was 91% in both strains, indicating that most of the recombinant xylose reductase was efficiently secreted in the extracellular fraction. In a baffled flask culture of the $SEY2102{\Delta}trp1$/pGMF-GRE3 strain, 12.1 g/l of xylitol was produced from 20 g/l of xylose, and ~83% of the consumed xylose was reduced to xylitol.

Comparative Study of Protein Profile during Development of Mouse Placenta

  • Han, Rong-Xun;Kim, Hong-Rye;Naruse, Kenji;Choi, Su-Min;Kim, Baek-Chul;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.31 no.4
    • /
    • pp.253-260
    • /
    • 2007
  • To examine the differential protein expression pattern in the 11.5 day post-coitus (dpc) and 18.5 dpc placenta of mouse, we have used the global proteomics approach by 2-D gel electrophoresis (2-DE) and MALDI-TOF-MS. The differential protein patterns of 3 placentae at the 11.5 dpc and 18.5 dpc from nature mating mice were analyzed. Proteins within isoelectric point range of $3.0{\sim}10.0$, separately were analyzed in 2DE with 3 replications of each sample. A total of approximately 1,600 spots were detected in placental 2-D gel stained with Coomassie-blue. In the comparison of 11.5 dpc and 18.5 dpc placentae, a total of 108 spots were identified as differentially expressed proteins, of which 51 spots were up-regulated proteins such as alpha-fetoprotein, mKIAA0635 protein and transferrin, annexin A5, while 48 spots were down-regulated proteins such as Pre-B-cell colony-enhancing factor l(PBEF), aldolase 1, A isoform, while 4 spots were 11.5 dpc specific proteins such as chaperonin and Acidic ribosomal phosphoprotein P0, while 3 spots were 18.5 dpc specific proteins such as aldo-keto reductase family 1, member B7 and CAST1/ERC2 splicing variant-1. Most identified proteins in this analysis appeared to be related with catabolism, cell growth, metabolism and regulation. Our results revealed composite profiles of key proteins involved in mouse placenta during pregnancy.

Recombinant Production of an Inulinase in a Saccharomyces cerevisiae gal80 Strain

  • Lim, Seok-Hwan;Lee, Hong-Weon;Sok, Dai-Eun;Choi, Eui-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1529-1533
    • /
    • 2010
  • The inulinase gene (INU1) from Kluyveromyces marxianus NCYC2887 was overexpressed by using the GAL10 promotor in a ${\Delta}ga180$ strain of Saccharomyces cerevisiae. The inulinase gene lacking the original signal sequence was fused in-frame to a mating factor ${\alpha}$ signal sequence for secretory expression. Use of the ${\Delta}ga180$ strain allowed for the galactose-free induction of inulinase expression using a glucose-only medium. Shake-flask cultivation in YPD medium produced 34.6 U/ml of the recombinant inulinase, which was approximately 13-fold higher than that produced by K. marxianus NCYC2887. It was found that the use of the ${\Delta}ga180$ strain improved the expression of inulinase in the recombinant S. cerevisiae in both aerobic and anaerobic conditions by about 2.9- and 1.7-fold, respectively. A 5-l fed-batch fermentation using YPD medium was performed under aerobic condition with glucose feeding, which resulted in the inulinase production of 31.7 U/ml at the $OD_{600}$ of 67. Ethanol fermentation of dried powder of Jerusalem artichoke, an inulin-rich biomass, was also performed using the recombinant S. cerevisiae expressing INU1 and K. marxianus NCYC2887. Fermentation in a 5-l scale fermentor was carried out at an aeration rate of 0.2 vvm, an agitation rate of 300 rpm, and with the pH controlled at 5.0. The temperature was maintained at $30^{\circ}C$ and $37^{\circ}C$, respectively, for the recombinant S. cerevisiae and K. marxianus. The maximum productivities of ethanol were 59.0 and 53.5 g/l, respectively.

Phylogenetic Analysis of Pleurotus Species Based on the Nuclear SSU rRNA Sequences (Phylogenetic Analysis of Pleurotus Species Based on the Nuclear SSU rRNA Sequences)

  • Jeong, Jae Hun;Kim, Eun Gyeong;No, Jeong Hye
    • Journal of Microbiology
    • /
    • v.34 no.1
    • /
    • pp.37-37
    • /
    • 1996
  • The internal regions of nuclear small subunit rRNA from 6 plaeurotus species and 5 Pleurotus ostreatus strains were amplified by PCR and sequenced. The DNA sequences of 8 Pleurotus strains (P. ostreatus NFFA2, NFFA4501, NFFA4001, KFFA4001, KFCC11635, P florida, P. florida, P. sajor-cuju, P. pulmonarius, and P. spodoleucus) were idential, but P. cornucopiae differed from them in two bases out of 605 bases. However, p[hylogenetic analysis of the sequences by DNA-distance matrix and UPGMA methods showed that P. ostreatus NFFA2m1 and NFFA2m2, known as mutants of P. ostreatus NFFA2, belonged to anther group of Basidiomycotina, which is close to the genus Auricularia. The difference of the SSU rDNA sequences of P. cornucopiae from other Pleurotus species tested corresponds to the difference of mitochondrial plasmid type present in Pleurotus species as observed by Kim et al. (1993, Korean J. Microbiol. 31, 141-147).ishement of silencing at the HMR/hsp82 locus can occur in G1-arrested cells. Cell cycle arrest at G1 phase was achieved by treatment of early log a cell cultures with .alpha.-factor mating pheromone, which induces G1 arrest. The result suggests that passage through S phase (and therefore DNA replication) is nor required for re-establishing silencer-mediated repression at the HMNRa/HSP82 locus. Finally, to test whether de nono protein synthesis is required for re-establishment of silencer-mediated repression, cells were pretreated with cycloheximide (500 /.mu.g/ml) 120 min. It was apparent that inhibiting protein synthesis delays, but does not prevent, re-establishment of silencer-mediated repression. Altogether, these results indicate that re-establishment of silencer-mediated repression is not dependent on the DNA replication and has no requirement for protein synthesis.