• Title/Summary/Keyword: $\alpha$-Amylase inhibitor

Search Result 62, Processing Time 0.021 seconds

Studies on Screening and Iolation of ${\alpha}-Amylase$ Inhibitors of Soil Microorganisms( II ) -Isolation and Activities of the Inhibitor of Streptomyces Strain DMC-72- (토양균의 ${\alpha}-Amylase$ 저해제 검색 및 분리에 관한 연주(제2보) -스트렙토마이세스속 DMC-72 균주의 저해 성분의 분리 및 작용-)

  • Kim, Kyung-Jae;Lee, Shung-Hee;Kim, Jung-Woo;Kim, Ha-Won;Shim, Mi-Ja;Choi, Eung-Chil;Kim, Byong-Kak
    • The Korean Journal of Mycology
    • /
    • v.13 no.4
    • /
    • pp.203-212
    • /
    • 1985
  • Of 450 strains isolated from the soil microbes collected in various locations in Korea, a strain had a strong inhibitory activity against bacterial ${\alpha}-amylase$ and was named strain DMC-72 of the genus Streptomyces. The amylase inhibitory metabolite produced by this strain was purified by means of acetone precipitation, adsorption on Amberlite IRC-50 and SP-Sephadex C-25. The inhibitor was found to be a derivative of oligosaccharides by spectral and chemical data. The inhibitor was stable at the pH range of $1{\sim}13$ and at $100^{\circ}C$ for half an hour, also inhibited other amylases such as salivary ${\alpha}-amylase$, pancreatic ${\alpha}-amylase$, fungal ${\alpha}-amylase$ and glucoamylase. However, it showed no inhibitory activity against ${\alpha}-glucosidase$, ${\beta}-glucosidase$, dextranase, and ${\beta}-amylase$. The kinetic studies of the inhibitor showed that its inhibitory effects on starch hydrolysis by ${\alpha}-amylase$ were noncompetitive.

  • PDF

Screening and Characterization of $\alpha$-Amylase Inhibitors from Cereals and Legumes in Korea (한국산 곡류와 두류 중 $\alpha$-Amylase 저해물질의 검색 및 특성)

  • Sim, Gi-Hwan;Bae, Yeong-Il;Mun, Ju-Seok
    • Food Science and Preservation
    • /
    • v.1 no.2
    • /
    • pp.117-124
    • /
    • 1994
  • To investigate characterization of the ${\alpha}$-amylase inhibitors from cereals and legumes produced in Korea, inhibitory activities against ${\alpha}$-amylase with the inhibitor from barley(Hordeum vulgare), wheat(Triticum aestivun), black bean(Glycine max), bean(Cajanus cajon) and pea(Pisum sativum) were measured. Among the samples tested, inhibitors from naked barley and black bean(sabong) which showed the highest inhibitor activities of cereals and legumes, respectively, were characterized according to treatment condition. The results obtained were summarized as follows. During the germination of naked barley and black bean, ${\alpha}$-amylase activities were gradually increased but inhibitory activities against ${\alpha}$-amylases were decreased. Both activities were gradually decreased when naked barley and black bean were stored. More than 50% of activities of the inhibitors from naked barley and black bean were remained at 100$^{\circ}C$ for 15 min and 20 min, respectively, indicating that the inhibitor from black bean was more stable to heat than that of barley.

  • PDF

The Inhibitory Effect of Cornus walteri Extract Against ${\alpha}-amylase$ (말채나무 추출물의 ${\alpha}-amylase$ 저해 활성)

  • Lim, Chae-Sung;Li, Chun-Ying;Kim, Yong-Mu;Lee, Wi-Young;Rhee, Hae-Ik
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.103-108
    • /
    • 2005
  • ${\alpha}-Amylase$ inhibitor is used to control blood glucose level by inhibiting starch digestion in the small intestine and delaying the absorption of glucose. In this study, we investigated the effect of the ethanol extracts from more than 1400 species of plants against ${\alpha}-amylase$ with the aim of developing a new ${\alpha}-amylase$ inhibitor. In the results, Cornus walteri extracts showed the highest inhibition activity. The inhibitory effect of Cornus walteri extract on the carbohydrate hydrolysis enzymes has different sensitivities against ${\alpha}-amylase$ from salivary and pancreatin and against ${\alpha}-glucosidase$ from yeast and porcine small intestine. In the study of inhibition kinetics of ${\alpha}-amylase$ and ${\alpha}-glucosidase$, Cornus walteri extract showed competitive inhibition against salivary and pancreatin while showing the combination of uncompetitive and noncompetitive inhibition against ${\alpha}-glucosidase$. The Cornus walteri extract was stable at acidic and thermal conditions. As for the blood glucose and body weight levels of Cornus walteri extract, we confirmed anti-hyperglycemic and anti-obesity effects. Also, in the investigation of the mRNA lever, Cornus walteri extract upregulated the level of GLUT4 mRNA in the quadriceps muscle.

Sargassum yezoense Extract Inhibits Carbohydrate Digestive Enzymes In Vitro and Alleviates Postprandial Hyperglycemia in Diabetic Mice.

  • Park, Jae-Eun;Lee, Ji-Hee;Han, Ji-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.3
    • /
    • pp.166-171
    • /
    • 2017
  • In this study, we investigated whether Sargassum yezoense extract (SYE) could inhibit ${\alpha}-glucosidase$ and ${\alpha}-amylase$ activities, and alleviate postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. Freeze-dried S. yezoense was extracted with 80% ethanol and concentrated for use in this study. The hypoglycemic effect was determined by evaluating the inhibitory activities of SYE against ${\alpha}-glucosidase$ and ${\alpha}-amylase$ as well as its ability to decrease postprandial blood glucose levels. The half-maximal inhibitory concentrations of SYE against ${\alpha}-glucosidase$ and ${\alpha}-amylase$ were $0.078{\pm}0.004$ and $0.212{\pm}0.064mg/mL$, respectively. SYE was a more effective inhibitor of ${\alpha}-glucosidase$ and ${\alpha}-amylase$ activities than the positive control, acarbose. The increase in postprandial blood glucose levels was significantly alleviated in the SYE group compared with that in the control group of STZ-induced diabetic mice. Furthermore, the area under the curves significantly decreased with SYE administration in STZ-induced diabetic mice. These results suggest that SYE is a potent inhibitor of ${\alpha}-glucosidase$ and ${\alpha}-amylase$ activities and alleviates postprandial hyperglycemia caused by dietary carbohydrates.

Preparation and Characterization of ${\alpha}$-D-Glucopyranosyl- ${\alpha}$-Acarviosinyl-D-Glucopyranose, a Novel Inhibitor Specific for Maltose-Producing Amylase

  • Kim, Myo-Jeong;Park, Kwan-Hwa
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2003.05a
    • /
    • pp.23-37
    • /
    • 2003
  • A novel inhibitor against maltose-producing a-amylase was prepared via stepwise degradation of a high molecular weight acarbose (HMWA) using Thermus maltogenic amylase (ThMA). The structure of the purified inhibitor was determined to be ${\alpha}$-D-glucopyranosyl-${\alpha}$-acarviosinyl-D-glucopyranose (GlcAcvGlc). Progress curves of p-nitrophenyl-${\alpha}$-D-maltoside (PNPG2) hydrolysis by various amylolytic enzymes, including maltogenase (MGase), ThMA, and cyclodextrinase(CDase) I-5, in the presence of acarbose or GlcAcvGlc indicated a slow-binding mode of inhibition. The inhibition potency of GlcAcvGlc for MGase, ThMA, and CDase I-5 was 3 orders of magnitude higher than that of acarbose.

  • PDF

[ α ]-Amylase Inhibitory Activity of Flower and Leaf Extracts from Buckwheat (Fagopyrum esculentum) (메밀(Fagopyrum esculentum) 꽃, 잎 추출건조물의 α-Amylase 효소활성 저해)

  • Lee, Myung-Heon;Lee, Jung-Sun;Yang, Hee-Chul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.1
    • /
    • pp.42-47
    • /
    • 2008
  • Prevention of postprandial hyperglycemia is important, as it is implicated in the development of macro- and microvascular complications associated with diabetes. An inhibitor of ${\alpha}$-amylase which acts in the first step of carbohydrate digestion, is expected to be a suppressor of postprandial hyperglycemia. This study investigated the porcine pancreatic ${\alpha}$-amylase inhibitory activity of the extracts from buckwheat (Fagopyrum esculentum) flower, leaf, stem and grain. Flower, leaf, stem and grain of buckwheat were extracted by water and ethanol (40%, 70%, 100%), respectively. Flower and leaf extracts were more effective ${\alpha}$-amylase inhibitors than stem and grain extracts in all tested solutions. Ethanol extracts were more effective than water extracts or powders on the ${\alpha}$-amylase inhibitory activities. At concentrations of $0.5%{\sim}10%$ (w/w, starch basis), the flower extracts of 40%, 70% and 100% ethanol lowered the enzyme activity by about 90% and the results were similar to the values of acarbose. At the same concentrations, the leaf extracts of 100% ethanol lowered the enzyme activity by about 90%. These results suggest that buckwheat flower and leaf ethanol extracts may delay carbohydrate digestion and lower postprandial hyperglycemia.

Screening of $\alpha$-Amylase and $\alpha$-Glucosidase Inhibitor from Nepalese Plant Extracts (100종 네팔 식물 추출물로부터 $\alpha$-Amylase 및 $\alpha$-Glucosidase저해제의 선별)

  • Kim, Mi-Sun;Ahn, Seon-Mi;Jung, In-Chang;Kwon, Gi-Seok;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.2
    • /
    • pp.183-189
    • /
    • 2010
  • In the course of screening for anti-acidosis and anti-diabetes agent from natural products, the inhibitory activities of Nepales plant extracts against microbial $\alpha$-amylase and $\alpha$-glucosidase were evaluated. Among the 100 different kinds of ethanol extracts, Cedrus deodara (Roxb.) G. Don and Myrica nagi Thunb showed strong inhibition activities against $\alpha$-amylase. The $IC_{50}$ values of C. deodara (Roxb.) G. Don, M. nagi Thunb and acarose, a commercial available anti-diabetes agent, were 44.5, 47.5 and $50.5\;{\mu}g/mL$, respectively. Considering the crude extract of C. deodara (Roxb.) G. Don, and M. nagi Thunb, these extracts have strong potentials as anti-acidosis or anti-diabates agent. In a while, Cleistocalyx operculatus (Roxb.) extract showed a good inhibition activity to $\alpha$-amylase and $\alpha$-glucosidase, even it was recently reported. The selected three extracts did not show any hemolysis activity against human red blood cell up to 1 mg/mL, and the inhibition activities were maintained by heat or acid treatment. Moreover, treatment of HCl (0.01N) for 1 h into C. operculatus (Roxb.) and M. nagi Thunb increased the inhibition activity from 50% to 70%. Our results suggest that C. deodara (Roxb.) G. Don, M. nagi Thunb, and C. operculatus (Roxb.) are potential as anti-acidosis and anti-diabetes agents.

Screening and Classification of Actinomycetes Producing $\alpha$-Amylase Inhibitors and the Isolation, their Kinetic Studies of $\alpha$-Amylase Inhibitors ($\alpha$-Amylase 저해제 생산 방선균의 선별과 분류 및 $\alpha$-Amylase저해제의 분리와 Kinetics 연구)

  • 김제학;김정우;김하원;심미자;최응칠;김병각
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.223-232
    • /
    • 1985
  • To find microorganisms of producing $\alpha$-amylase inhibitors, actinomycetes were isolated from soil samples that were collected at different locations in Korea and screened for enzyme inhibitory activity. A strain of these microbes had a high inhibitory activity and was identified as one of the genus Streptomyces by morphological, biochemical and physiological studies according to the methods of the International Streptomyces Project (ISP). The medium used consisted of 3 % corn starch, 0.2% yeast extract and 0.8% peptone (pH 7.0). When this strain was aerobically cultured in the medium on a rotary shaker, the highest inhibitory activity was obtained after four days. This inhibitor had inhibitory activities on various $\alpha$-amylases and glucoamylase, but not on $\beta$-amylase.

  • PDF

Inhibitory Effects of Proanthocyanidin Extracted from Distylium racemosum on ${\alpha}-Amylase$ and ${\alpha}-Glucosidase$ Activities (조록나무 Proanthocyanidin의 ${\alpha}-Amylase$${\alpha}-Glucosidase$에 대한 저해 효과)

  • Ahn, Jin-Kwon;Park, Young-Ki;Park, So-Young;Kim, Yong-Mu;Rhee, Hae-Ik;Lee, Wi-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.4 s.139
    • /
    • pp.271-275
    • /
    • 2004
  • Distylium racemosum Sieb. Et Zucc contains some compounds inhibit -amylase activity in experimental conditions. The inhibitory test showed that 50% acetone extracts from the bark and leaves of the plant strongly inhibited salivary -amylase activity. Proanthocyanidin(PA) which has strong inhibitory activity was extracted from the leaves by chromatography on Sephadex LH-20. The inhibitory activities and the inhibition kinetics of the PA were studied against three kinds of enzymes: human salivary ${\alpha}-Amylase$ (SAA), pork pancreatin ${\alpha}-Amylase$ (PAA) and yeast ${\alpha}-Glucosidase$ (AG). Then the activities of PA against SAA, PAA and AG were compared with those of acarbose, a commercial agent. The inhibitory activities of PA were stronger than those of acarbose. Inhibition kinetics of the PA showed competitive inhibition for SAA and PAA, and non competitive inhibition for GA.

Screening of α-Amylase, α-Glucosidase and Lipase Inhibitory Activity with Gangwon-do Wild Plants Extracts (강원도 자생 산채 추출물의 α-Amylase, α-Glucosidase, Lipase 효소 저해활성 탐색)

  • Kim, Hee-Yeon;Lim, Sang-Hyun;Park, Yu-Hwa;Ham, Hun-Ju;Lee, Kwang-Jae;Park, Dong-Sik;Kim, Kyung-Hee;Kim, Song-Mun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.308-315
    • /
    • 2011
  • We investigated ${\alpha}$-amylase, ${\alpha}$-glucosidase and lipase inhibitory activity of extracts collected from wild plants in Gangwon-do. 90 wild plants were collected and their water and ethanol extracts were obtained. Results of measuring ${\alpha}$-amylase inhibitory activity indicated more than 80% of activity inhibition in 10 mg/mL concentration for ethanol extracts of three plants and water extracts of two plants. For ${\alpha}$-glucosidase inhibitory activity, ethanol extracts of thirteen plants and water extracts of three plants showed more than 80% of activity inhibition in 10 mg/mL concentration. In the experiment of inhibiting lipase activity, ethanol extracts of seven plants and water extracts of one plants showed above 80% of activity inhibition in 10 mg/mL concentration. These results suggest that the selected extracts could be potentially used as a resource of bioactive materials for health functional foods.