분리한 한국형 대장균파아지군($\phi$C1, $\phi$C2, $\phi$C3 및 $\phi$C4)과 잘 알려진 미국형 대장균파아지군($\phi$T2, $\phi$T4, $\phi$T5, $\phi$T7 및 ${\phi}{\lambda}$)의 유전적 유연관계를 조사하기 위하여 분자적 계통분류를 위한 방법인 RAPD-PCR을 실시하고 컴퓨터분석을 하였다. 그 결과, 9개의 대장균파아지들은 5개의 그룹으로 나위어지면서 한국형 대장균파아지들만이 그들간의 유전적 유사도가 매우 높으면서 하나의 클러스터를 형성하였다. 반면 이국형 대장균파아지들은 오직 하나의 서브클러스터를 가지며 나누어졌다. 즉, 미국형 대장균파아지 중 $\phi$T2와 $\phi$T4($T_{even}$ 파아지)만이 하나의 서브클러스터를 형성하면서 $\phi$T5, $\phi$T7 및 ${\phi}{\lambda}$들과 뚜렷히 구분되고 있었다. 그리고 한국형 대장균파아지들은 미국형 대장균차이지 중 오직 ${\phi}{\lambda}$와 유전적 유연관계를 갖고 있음을 확인하였다. 한편 한국형 대장균파아지의 게놈의 크기는 25,000 bp~35,000 bp 정도 였으며, 이 중 $\phi$C2가 그 크기가 가장 작고 $\phi$C1이 가장 컸다. 그리고 $\phi$C3과 $\phi$C4의 게놈은 중간 크기로 비슷하였다.
The output of Stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide a basic data for the design of regenerator matrix, characteristics of heat transfer and flow friction loss were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, 6 kinds of steel wires, 4 kinds of combined steel wires, 8 kinds of combined steel wires with screen meshes were used. The results are summarized as follows; Among 6 kinds of steel wires $({\phi}0.7\;mm,\;{\phi}0.9\;mm,\;{\phi}1.2\;mm,\;{\phi}\;1.6\;mm,\;{\phi}2.0\;mm,\;{\phi}2.7\;mm),$ the two steel wires $({\phi}0.7\;mm,\;{\phi}0.9\;mm)$ showed the highest in effectiveness. Among 4 kinds of combined steel wires $({\phi}l.6-{\phi}l.2\;mm,\;{\phi}1.2-{\phi}l.6\;mm,\;{\phi}0.9-{\phi}l.2\;mm,\;{\phi}l.2-{\phi}0.9\;mm),\;the\;{\phi}1.2-{\phi}0.9\;mm$ showed the highest in effectiveness. Among 8 kinds of combined steel wires with screen meshes $(150-{\phi}0.9\;mm,\;150-{\phi}l.2\;mm,\;{\phi}0.9\;mm-150,\;{\phi}1.2\;mm-150,\;150-{\phi}0.9\;mm-150,\;150-{\phi}1.2\;mm-150,\;150-{\phi}l.6\;mm-150,\;150-{\phi}2.0\;mm-150),\;the\;{\phi}l.2\;mm-150$ showed the highest in effectiveness.
Let G be a group and X be a nonempty set and H be a subgroup of G. For a given ${\phi}_G\;:\;G{\times}X{\rightarrow}X$, a group action of G on X, we define ${\phi}_H\;:\;H{\times}X{\rightarrow}X$, a subgroup action of H on X, by ${\phi}_H(h,x)={\phi}_G(h,x)$ for all $(h,x){\in}H{\times}X$. In this paper, by considering a subgroup action of H on X, we have some results as follows: (1) If H,K are two normal subgroups of G such that $H{\subseteq}K{\subseteq}G$, then for any $x{\in}X$ ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_H}(x)$) = ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_K}(x)$) = ($orb_{{\phi}_K}(x)\;:\;orb_{{\phi}_H}(x)$); additionally, in case of $K{\cap}stab_{{\phi}_G}(x)$ = {1}, if ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}H}(x)$) and ($orb_{{\phi}_K}(x)\;:\;orb_{{\phi}_H}(x)$) are both finite, then ($orb_{{\phi}_G}(x)\;:\;orb_{{\phi}_H}(x)$) is finite; (2) If H is a cyclic subgroup of G and $stab_{{\phi}_H}(x){\neq}$ {1} for some $x{\in}X$, then $orb_{{\phi}_H}(x)$ is finite.
The purpose of this paper is to introduce a new class of rings that is closely related to the classes of pseudo valuation rings (PVRs) and pseudo-almost valuation domains (PAVDs). A commutative ring R is said to be ${\phi}$-ring if its nilradical Nil(R) is both prime and comparable with each principal ideal. The name is derived from the natural map ${\phi}$ from the total quotient ring T(R) to R localized at Nil(R). A prime ideal P of a ${\phi}$-ring R is said to be a ${\phi}$-pseudo-strongly prime ideal if, whenever $x,y{\in}R_{Nil(R)}$ and $(xy){\phi}(P){\subseteq}{\phi}(P)$, then there exists an integer $m{\geqslant}1$ such that either $x^m{\in}{\phi}(R)$ or $y^m{\phi}(P){\subseteq}{\phi}(P)$. If each prime ideal of R is a ${\phi}$-pseudo strongly prime ideal, then we say that R is a ${\phi}$-pseudo-almost valuation ring (${\phi}$-PAVR). Among the properties of ${\phi}$-PAVRs, we show that a quasilocal ${\phi}$-ring R with regular maximal ideal M is a ${\phi}$-PAVR if and only if V = (M : M) is a ${\phi}$-almost chained ring with maximal ideal $\sqrt{MV}$. We also investigate the overrings of a ${\phi}$-PAVR.
Consider a tetrhedron is composed of six dihedral angles .phi.(i=1,2..., 6), and a vertex of a tetrahedron is also three dihedral angles. It will assume that a vertex A, for an example, is composed of there angles definded such as .alpha..betha. and .gamma. !. then there is a corresponding angle can be given as .phi1.,.phi2.,.phi3.. Here, in order to differentiate between a conventional triangle and dihedral angle, if a dihedral angle degined in this paper is symbolized as .phi..LAMBDA.,the value of cos.theta.of .phi./sab a/, in a trigonometric function rule,can be defined to tecos.phi..LAMBD/sab A/., and it is defined as a tetradedral cosine .phi. or simply called a tecos.phi.. Moreover, in a simillar method, the dihedral angle of tetrahedron .phi..LAMBDA. is given as : value of sin .theta. can defind a tetra-sin.phi..LAMBDA., and value of tan .theta. of .phi..LAMBDA. is a tetra-tan .phi..LAMBDA. By induction it can derive that a tetrahedral geometry on the basis of suggesting a geometric tetrahedron
In this paper we study the regularity of inside (or outside) (${\theta},{\phi}$)-derivations in BCI-algebras X and prove that let $d_{({\theta},{\phi})}:X{\rightarrow}X$ be an inside (${\theta},{\phi}$)-derivation of X. If there exists a ${\alpha}{\in}X$ such that $d_{({\theta},{\phi})}(x){\ast}{\theta}(a)=0$, then $d_{({\theta},{\phi})}$ is regular for all $x{\in}X$. It is also shown that if X is a BCK-algebra, then every inside (or outside) (${\theta},{\phi}$)-derivation of X is regular. Furthermore the concepts of ${\theta}$-ideal, ${\phi}$-ideal and invariant inside (or outside) (${\theta},{\phi}$)-derivations of X are introduced and their related properties are investigated. Finally we obtain the following result: If $d_{({\theta},{\phi})}:X{\rightarrow}X$ is an outside (${\theta},{\phi}$)-derivation of X, then $d_{({\theta},{\phi})}$ is regular if and only if every ${\theta}$-ideal of X is $d_{({\theta},{\phi})}$-invariant.
Let A be a uniform algebra, and let $\phi$ be a self-map of the spectrum $M_A$ of A that induces a composition operator $C_{\phi}$, on A. It is shown that the image of $M_A$ under some iterate ${\phi}^n$ of \phi is hyperbolically bounded if and only if \phi has a finite number of attracting cycles to which the iterates of $\phi$ converge. On the other hand, the image of the spectrum of A under $\phi$ is not hyperbolically bounded if and only if there is a subspace of $A^{**}$ "almost" isometric to ${\ell}_{\infty}$ on which ${C_{\phi}}^{**}$ "almost" an isometry. A corollary of these characterizations is that if $C_{\phi}$ is weakly compact, and if the spectrum of A is connected, then $\phi$ has a unique fixed point, to which the iterates of $\phi$ converge. The corresponding theorem for compact composition operators was proved in 1980 by H. Kamowitz [17].
In this paper, we introduce an asymptotically $\phi$-hemicontractive mapping with a $\phi$-normalized duality mapping and obtain some strongly convergent result of a kind of multi-step iteration schemes for asymptotically $\phi$-hemicontractive mappings.
Let R be a commutative ring with identity, and ${\phi}:{\mathfrak{I}}(R){\rightarrow}{\mathfrak{I}}(R){\cup}\{{\varnothing}\}$ be a function where ${\mathfrak{I}}(R)$ is the set of all ideals of R. Following [2], a proper ideal P of R is called a ${\phi}$-prime ideal if $x,y{\in}R$ with $xy{\in}P-{\phi}(P)$ implies $x{\in}P$ or $y{\in}P$. For an ideal I of R, we define the ${\phi}$-radical ${\sqrt[{\phi}]{I}}$ to be the intersection of all ${\phi}$-prime ideals of R containing I, and show that this notion inherits most of the essential properties of the usual notion of radical of an ideal. We also investigate when the set of all ${\phi}$-prime ideals of R, denoted $Spec_{\phi}(R)$, has a Zariski topology analogous to that of the prime spectrum Spec(R), and show that this topological space is Noetherian if and only if ${\phi}$-radical ideals of R satisfy the ascending chain condition.
Let R be a commutative ring with non-zero identity and let NN(R) = {I | I is a nonnil ideal of R}. Let M be an R-module and let ${\phi}-tor(M)=\{x{\in}M{\mid}Ix=0\text{ for some }I{\in}NN(R)\}$. If ${\phi}or(M)=M$, then M is called a ${\phi}$-torsion module. An R-module M is said to be ${\phi}$-flat, if $0{\rightarrow}{A{\otimes}_R}\;{M{\rightarrow}B{\otimes}_R}\;{M{\rightarrow}C{\otimes}_R}\;M{\rightarrow}0$ is an exact R-sequence, for any exact sequence of R-modules $0{\rightarrow}A{\rightarrow}B{\rightarrow}C{\rightarrow}0$, where C is ${\phi}$-torsion. In this paper, the concepts of NRD-submodules and NP-submodules are introduced, and the ${\phi}$-flat modules over a ${\phi}-Pr{\ddot{u}}fer$ ring are investigated.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.