• Title/Summary/Keyword: $[^{18}F]F_2$

Search Result 3,009, Processing Time 0.036 seconds

The Development of Radiopharmaceutical Synthesizer and its FDG Synthesis Verification

  • Jong Min Kim;Il Koo Cheong;Chan Soo Park;Hee Seup Kil;Cheol Soo Lee
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.87-93
    • /
    • 2022
  • [18F]FDG is known as the most widely used radiopharmaceutical in the imaging field of nuclear medicine worldwide. With the introduction of PET equipment, the demand for [18F]FDG has increased and the production volume has also increased. However, in order to increase production, the use of 18F radioisotope must be increased or [18F]FDG must be synthesized in high yield. Therefore, in order to meet the high yield and purity of radiopharmaceuticals, a radiopharmaceutical automatic synthesizer was required. As the use of [18F]FDG increased, automated synthesizer manufacturers supplied various types of radiopharmaceutical automated synthesizers to the market. In this study, we developed a commercialized [18F]FDG radiopharmaceutical automatic synthesizer (sCUBE FDG) using a disposable cassette type that complies with GMP developed by FutureChem, a leading radiopharmaceutical company. We used sCUBE FDG to verify the production process, radiopharmaceutical's quality (radiochemical purity, etc.), and radiochemical yield of [18F]FDG. As a result of optimizing the automatic synthesis process and synthesizing a total of 30 times, the production time was 35 ± 3 minutes and the average production yield was 65.6%.

A Study on Preparation of 3'-$[^{18}F]$Fluoro-3'-deoxythymidine and Its Biodistribution in 9L Glioma Bearing Rats (3'-$[^{18}F]$Fluoro-3'-deoxythymidine의 합성과 9L glioma 세포를 이식한 래트에서의 체내동태에 관한 연구)

  • Shim, Ah-Young;Moon, Byung-Seok;Lee, Tae-Sup;Lee, Kyo-Chul;An, Gwang-Il;Yang, Seung-Dae;Yu, Kook-Hyun;Cheon, Gi-Jeong;Choi, Chang-Woon;Lim, Sang-Moo;Chun, Kwon-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.5
    • /
    • pp.263-270
    • /
    • 2006
  • Purpose: Several radioisotope-labeled thymidine derivatives such as $[^{11}C]$thymidine was developed to demonstrate cell proliferation in tumor. But it is difficult to track metabolism with $[^{11}C]$thymidine due to rapid in vivo degradation and its short physical half-life. 3'-$[^{18}F]$fluoro-3'-deoxythymidine ($[^{18}F]$FLT) was reported to have the longer half life of fluorine-18 and the lack of metabolic degradation in vivo. Here, we described the synthesis of the 3'-$[^{18}F]$fluoro-3'-deoxythymidine ($[^{18}F]$FLT) and compared with $([^{18}F]FET)\;and\;([^{18}F]FDG)$ in cultured 9L cell and obtained the biodistribution and PET image in 9L tumor hearing rats. Material and Methods: For the synthesis of $[^{18}F]$FLT, 3-N-tert-butoxycarbonyl-(5'-O-(4,4'-dimet hoxytriphenylmethyl)-2'-deoxy-3'-O-(4-nitrobenzenesulfonyl)-${\beta}$-D-threopentofuranosyl)thymine was used as a FLT precursor, on which the tert-butyloxycarbonyl group was introduced to protect N3-position and nitrobenzenesulfonyl group. Radiolabeling of nosyl substitued precursor with $^{18}F$ was performed in acetonitrile at $120^{\circ}C$ and deproteced with 0.5 N HCI. The cell uptake was measured in cultured 9L glioma cell. The biodistribution was evaluated in 9L tumor bearing rats after intravenous injection at 10 min, 30 min, 60 min and 120 min and obtained PET image 60 minutes after injection. Results: The radiochemical yield was about 20-30% and radiochemical purity was more than 95% after HPLC purification. Cellular uptake of $[^{18}F]$FLT was increased as time elapsed. At 120 min post-injection, the ratios of tumor/blood, tumor/muscle and tumor/brain were $1.61{\pm}0.34,\;1.70{\pm}0.30\;and\;9.33{\pm}2.22$, respectively. The 9L tumor was well visualized at 60 min post injection in PET image. Conclusion: The uptake of $[^{18}F]$FLT in tumor was higher than in normal brain and PET image of $[^{18}F]$FLT was acceptable. These results suggest the possibility of $[^{18}F]$FLT at an imaging agent for brain tumor.

A Study on the Synthesis and Its Biodistribution of C-11 and F-18 Labelled Choline (C-11 및 F-18 표지 콜린의 합성과 체내동태에 관한 연구)

  • Yang, Seung-Dae;Kim, Sang-Wook;Suh, Yong-Sup;Chun, Kwon-Soo;Ahn, Soon-Hyuk;Hur, Min-Goo;Lim, Sang-Moo;Hong, Sung-Woon;Yu, Kook-Hyun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.3
    • /
    • pp.185-191
    • /
    • 2001
  • Objectives: Recently, $[methyl-^{11}C]-({\beta}$-Hydroxyethyl)trimethylammonium ($[^{11}C]$choline) Has been discovered to be a very effective tracer in imaging various human tumors using positron omission tomography. Because of the short half-life of C-11, it is very difficult to use in a routine imaging procedure and needs a frequent synthesis of $[^{11}C]$choline. This can be supplemented by the substitution of $[^{11}C]$choline with $[methyl-^{18}F]$fluorocholine. Here, we would like to report ceil uptake and biodistribution of $[^{11}C]$choline and $[^{18}F]$fluorocholine as a basic study. Methods: $[^{11}C]$Choline was prepared by the treatment of $[^{11}C]CH_3I$ with N,N-dimethylaminoethanol and $[^{18}F]$fluorocholine was synthesized from reaction of $CH_2Br[^{18}F]F$ with N,N-dimethylaminoethanol. The radiochemical purity was checked by high performance liquid chromatography (HPLC). The blodistribution of $[^{11}C]$choline and $[^{18}F]$fluorocholine was determined in balb/c mouse at 5 min, 20 min, 40 min and 80 min. The cell uptake was measured using glioma (9L) and colon adenocarcinoma (SW620). Results: The radiochemical purity was more than 98% after purification. In the liver, uptake did not change over time; the uptake was 20%ID/g for $[^{11}C]$choline and 13%ID/g for $[^{18}F]$fluorocholine. In the kidney, radioactivity decreased over time; the uptake was 15%ID/g for $[^{11}C]$choline and 20%ID/g for $[^{18}F]$fluorocholine, 80 min post-injection. The cell uptake of $[^{11}C]$choline was 4.93% for glioma (9L) and 18.69% for colon adenocarcinoma (SW620). For $[^{18}F]$fluorocholine, 1.77% for glioma (9L) and 2.77% for colon adenocarcinoma (SW620). Conclusion: $[^{11}C]$Choline and $[^{18}F]$fluorocholine showed a different cell uptake tendency, depending on cancer cell line.

  • PDF

Automated Synthesis of [$^{18}F$]Fallypride for Routine Clinical Use (자동합성장치를 이용한 [$^{18}F$]Fallypride의 합성)

  • Park, Jun-Hyung;Moon, Byung-Seok;Lee, Hong-Jin;Lee, Hyo-Jun;Lee, In-Won;Lee, Byung-Chul;Kim, Sang-Eun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.104-109
    • /
    • 2010
  • Purpose: $[^{18}F]$Fallypride plays an effective radiotracer for the study of dopamine $D_2/D_3$ receptor occupancy, neuropsychiatric disorders and aging in humans. This tracer has the potential for clinical use, but automated labeling efficiency showed low radiochemical yields about 5~20% with relatively long labelling time of fluorine-18. In present study, we describe an improved automatic synthesis of [$^{18}F$]Fallypride using different base concentration for routine clinical use. Materials and Methods: Fully automated synthetic process of [$^{18}F$]Fallypride was perform using the TracerLab $FX_{FN}$ synthesizer under various labeling conditions and tosyl-fallypride was used as a precursor. [$^{18}F$]Fluoride was extracted with various concentration of $K_{2.2.2.}/K_2CO_3$ from $^{18}O$-enriched water trapped on the ion exchange cartridge. After azeotropic drying, the labeling reaction proceeded in $CH_3CN$ at $100^{\circ}C$ for 10 or 30 min. The reaction mixture was purified by reverse phase HPLC and collected organic solution was exchanged by tc-18 Sep-Pak for the clinically available solution. Results: The optimal labeling condition of [$^{18}F$]Fallypride in the automatic production was that 2 mg of tosyl-fallypride in acetonitrile (1 mL) was incubated at $100^{\circ}C$ for 10 min with $K_{2.2.2.}/K_2CO_3$ (11/0.8 mg). [$^{18}F$]Fallypride was obtained with high radiochemical yield about $66{\pm}1.4%$ (decay-corrected, n=28) within $51{\pm}1.2$ min including HPLC purification and solid-phase purification for the final formulation. Conclusion: [$^{18}F$]Fallypride was prepared with a significantly improved radiochemical yield with high specific activity and shorten synthetic time. In addition, this automated procedure provides the high reproducibility with no synthesis failures (n=28).

  • PDF

Simultaneous Observation of Fe-F and F-Fe-F Stretching Vibrations of Fluoride Anion Ligated Tetraphenylporphyrin Iron(Ⅲ) by Resonance Raman Spectroscopy

  • 이인숙;신지영;남학현;김도균;팽기정
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.730-733
    • /
    • 1997
  • Monofluoroiron(Ⅲ) tetraphenylporphyrin, Fe(TPP)F, and difluoroiron(Ⅲ) tetraphenylporphyrin, [Fe(TPP)F2]- were generated in a various non-aqueous solvents by the reaction between Fe(TPP)Cl and tetrabutylammonium fluoride TBAF 3H2O. Formation of the these complexes was detected by the appearance of the ν(F-Fe) (ν, stretching vibration) at 506 cm-1 for Fe(TPP)F and the ν(F-Fe-F) at 448 cm-1 for [Fe(TPP)F2]-, simultaneously, with 441.6 nm excitation by Resonance Raman (RR) spectroscopy. These assignments were confirmed by observed frequency shifts due to 56Fe/54Fe and TPP/TPP-d8/TPP-N15 isotopic substitutions. Difluoroiron complex is an iron(Ⅲ) high-spin complex with the oxidation sensitive band at 1347 cm-1 for ν4 and core size/spin state sensitive band at 1541 cm-1 for ν2.

Usefulness of $^{18}F$-FDG PET/CT in Locoregional Recurrence of Differentiated Thyroid Cancer: Comparison PET/CT to PET and Neck Ultrasonography for Biopsy-proven Lesions (갑상선유두암 재발 진단에서 $^{18}F$-FDG PET/CT와 경부초음파검사 병용의 유용성: PET, 경부초음파검사 그리고 혈청 티로글로불린 (thyroglobulin)의 비교)

  • Kim, Kun-Ho;Shong, Min-Ho;Seo, Young-Duk;Kim, Seong-Min
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.411-420
    • /
    • 2009
  • Purpose: The aim of this study was to investigate the usefulness of $^{18}F$-FDG PET/CT with neck ultrasonography (neck US) in patients with recurrent, papillary thyroid cancer. Material and methods: This retrospective study (December 2006 to April 2008) enrolled sixty-one patients (ninety-one lesions) who underwent high-dose $^{131}I$-ablation therapy after total thyroidectomy, and evaluated recurred papillary thyroid cancer. All lesions were confirmed by histopathology and compared histopathologic findings to PET, PET/CT, and neck US findings. Results: In sixty-one patients (57 women, 4 men; age range, 24-81 years, mean 49 years; 61 papillary carcinomas), the sensitivity, specificity, accuracy of $^{18}F$-FDG PET/CT was 87.2%, 64.0%, 78.1% on a patient basis and 92.3%, 66.7%, 80.9% on a lesion basis, respectively. The sensitivity, specificity, accuracy of $^{18}F$-FDG PET was 71.8% (p=0.03), 59.0% (p=1.00), 67.2% (p=0.03) on a patient basis and 78.8% (p<0.01), 64.1% (p=1.00), 72.5% (p=0.02) on a lesion basis, respectively. The sensitivity, specificity, accuracy of neck US was 71.1% (p=0.07), 52.2% (p=0.75), 63.9% (p=0.05) on a patient basis and 71.2% (p<0.01), 61.5% (p=1.00), 67.0% (p=0.06) on a lesion basis, respectively. Combined $^{18}F$-FDG PET/CT with neck US improved the sensitivity, specificity, accuracy to 94.7% (p=0.50), 82.6% (p=0.13), 90.2% (p=0.03) on a patient basis and 96.2% (p=0.50), 89.7% (p<0.01), 93.4% (p<0.01) on a lesion basis, respectively. Conclusion: $^{18}F$-FDG PET/CT demonstrated significantly higher sensitivity than neck US for the detection of recurred papillary thyroid cancer lesions. Furthermore, combined $^{18}F$-FDG PET/CT with neck US showed more improved sensitivity, specificity, accuracy for diagnosis of recurrent papillary thyroid cancer.

Consideration of the Usefulness of 18F-FET Brain PET/CT in Brain Tumor Diagnosis (뇌종양진단에 있어 18F-FET Brain PET/CT의 유용성에 대한 고찰)

  • Kyu-Ho Yeon; Jae-Kwang Ryu
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.41-47
    • /
    • 2024
  • Purpose: 18F-FET, a radiopharmaceutical based on a Tyrosine amino acid derivative using the Sodium-Potassium Pump-independent Transporter (System L) for non-invasive evaluation of primary, recurrent, and metastatic brain tumors, exhibits distinct characteristics. Unlike the widely absorbed 18F-FDG in both tumor and normal brain tissues, 18F-FET demonstrates specific uptake only in tumor tissue while almost negligible uptake in normal brain tissue. This study aims to compare and evaluate the usefulness of 18F-FDG and 18F-FET Brain PET/CT quantitative analysis in brain tumor diagnosis. Materials and Methods: In 46 patients diagnosed with brain gliomas (High Grade: 34, Low Grade: 12), Brain PET/CT scans were performed at 40 minutes after 18F-FDG injection and at 20 minutes (early) and 80 minutes (delay) after 18F-FET injection. SUVmax and SUVpeak of tumor areas corresponding to MRI images were measured in each scan, and the SUVmax-to-SUVpeak ratio, an indicator of tumor prognosis, was calculated. Differences in SUVmax, SUVpeak, and SUVmax-to-SUVpeak ratio between 18F-FDG and 18F-FET early/delay scans were statistically verified using SPSS (ver.28) package program. Results: SUVmax values were 3.72±1.36 for 18F-FDG, 4.59±1.55 for 18F-FET early, and 4.12±1.36 for 18F-FET delay scans. The highest SUVmax was observed in 18F-FET early scans, particularly in HG tumors (4.85±1.44), showing a slightly more significant difference (P<0.0001). SUVpeak values were 3.33±1.13 for 18F-FDG, 3.04±1.11 for 18F-FET early, and 2.80±0.96 for 18F-FET delay scans. The highest SUVpeak was in 18F-FDG scans, while the lowest was in 18F-FET delay scans, with a more significant difference in HG tumors (P<0.001). SUVmax-to-SUVpeak ratio values were 1.11±0.09 for 18F-FDG, 1.54±0.22 for 18F-FET early, and 1.48±0.17 for 18F-FET delay scans. This ratio was higher in 18F-FET scans for both HG and LG tumors (P<0.0001), but there was no statistically significant difference between 18F-FET early and delay scans. Conclusion: This study confirms the usefulness of early and delay scans in 18F-FET Brain PET/CT examinations, particularly demonstrating the changes in objective quantitative metrics such as SUVmax, SUVpeak, and introducing the SUVmax-to-SUVpeak ratio as a new evaluation metric based on the degree of tumor malignancy. This is expected to further contributions to the quantitative analysis of Brain PET/CT images.

Synthesis and biodistribution of 18F-labeled α-, β- and ω-fluorohexadecanoic acid

  • Lee, Yun-Sang;Kim, Young Joo;Cheon, Gi Jeong;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2018
  • ${\omega}-[^{18}F]$-Fluorohexadecanoic acid (FHA) has been used for imaging of fatty acid metabolism of myocardium. To increase retention of radiolabeled fatty acid by blocking ${\beta}$-oxidation, methyl branched analogues have been used. In this experiment, we tried to synthesize 18F-labeled ${\alpha}-$, ${\beta}-$ and ${\omega}-FHA$ for imaging of the myocardial fatty acid metabolism. We synthesized ${\alpha}-$, ${\beta}-$ and ${\omega}$-mesylated methyl hexadecanoates and labeled with $^{18}F$ by reacting with $[^{18}F]$TBAF in acetonitrile at $80^{\circ}C$ for 10 min. Methyl ester group was removed by 1 M NaOH at $80^{\circ}C$ for 5 min. The yields of ${\alpha}-[^{18}F]$ and ${\omega}-[^{18}F]FHA$ were 25.5 and 45.5%, respectively [EOS]. However, ${\beta}-[^{18}F]FHA$ was not labeled at all due to a fast elimination reaction. The biodistribution study in ICR-mice showed that ${\omega}-[^{18}F]FHA$ has higher myocardial uptake and lower liver uptake than ${\alpha}-[^{18}F]FHA$. The electron-withdrawing effect of fluorine at ${\alpha}-$ position is believed to be the major factor affecting the biodistribution.

Semiempirical Estimation of Standard Enthalpy of Formation for Halogen Substituted Hydrocarbons (할로겐화합물의 표준생성열의 계산)

  • Kwang Yul Choo;Pil Heui Lee
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.108-114
    • /
    • 1980
  • By using electrostatic model and simple bond additivity scheme a reasonable and simple method was developed for the estimation of standard enthalpy of formation $({\Delta}H_f\;^{\circ})$ of very polar compounds. The bond contributions to the enthalpy of formation for halomethanes were; ${\Delta}H_f\;^{\circ}(C-F)=-36.44\;kcal/mole,\;{\Delta}H_f\;^{\circ}(C-Cl)=-2.57\;kcal/mole,\;{\Delta}H_f\;^{\circ}(C-Br)=5.32\;kcal/mole,\;{\Delta}H_f\;^{\circ}(C-I)=19.18\;kcal/mole,\;and\;{\Delta}H_f\;^{\circ}(C-H)=-3.61\;kcal/mole$, respectively. Using these values and calculated electrostatic energies, the estimated ${\Delta}H_f\;^{\circ}$ values were estimated and found to be in good agreement with observed values.

  • PDF

The Relationship between F-18-FDG Uptake, Hexokinase Activity and Glut-1 Expression in Various Human Cancer Cell Lines (다양한 사람 종양세포주에서 F-18-FDG의 섭취와 Hexokinase 활성 및 Glut-1 발현과의 상관관계)

  • Kim, Bo-Kwang;Chung, June-Key;Lee, Yong-Jin;Choi, Yong-Woon;Jeong, Jae-Min;Lee, Dong-Soo;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.4
    • /
    • pp.294-302
    • /
    • 2000
  • Purpose: To investigate the mechanisms related to F-18-FDG uptake by tumors, F-18-FDG accumulation was compared with glucose transporter-1 (Glut-1) expression and hexokinase activity in various human cancer cell lines. Materials and Methods: Human colon cancer (SNU-C2A, SNU-C4, SNU-C5), hepatocellular carcinoma (SNU-387, SNU-423, SNU-449), lung cancer (NCI-H522, NCI-H358, NCI-H1299), uterine cervical cancer (HeLa, HeLa 229, HeLa S3) and brain tumor (A172, Hs 683) cell lines were used. After 24 hr incubation of $5{\times}10^5$ cells, 37 kBq F-18-FDG was added and the uptake by cells at 10 min was measured using a gamma counter. Hexokinase activity was measured by continuous spectrophotometric rate determination. To measure mitochondrial hexokinase activity, mitochondrial fraction was separated by a high speed centrifuge. Immunohistochemical staining of Glut-1 was performed, and graded as 0, 1, 2, or 3 according to expression. Results: There was difference among F-18-FDG uptake, total and mitochondrial hexokinase activity, and Glut-1 expression with different cancer cell lines. The correlations of F-18-FDG with total hexokinase and mitochondrial hexokinase activity were low (r=0.27 and 0.26, respectively). Glut-1 expression showed a good correlation with F-18-FDG uptake (p=0.81, p=0.0015). Previously, we reported no correlation of F-18-FDG uptake with hexokinase activity in colon cancer cell lines. Thus, when colon cancer cells were excluded, F-18-FDG uptake showed higher correlation with total hexokinase and mitochondrial hexokinase activity (r=0.81, p=0.0027 and r=0.81, p=0.0049, respectively). Conclusion: Both Glut-1 expression and hexokinase activity were contributing factors related to F-18-FDG accumulation in human cancer cell lines. The relative contribution of Glut-1 expression and hexokinase activity, however, was different among different cancer cell types.

  • PDF