• Title/Summary/Keyword: $[^{18}F]F_2$

Search Result 3,009, Processing Time 0.029 seconds

Production of $[^{18}F]F_2$ Gas for Electrophilic Substitution Reaction (친전자성 치환반응을 위한 $[^{18}F]F_2$ Gas의 생산 연구)

  • Moon, Byung-Seok;Kim, Jae-Hong;Lee, Kyo-Chul;An, Gwang-Il;Cheon, Gi-Jeong;Chun, Kwon-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.228-232
    • /
    • 2006
  • Purpose: electrophilic $^{18}F(T_{1/2}=110\;min)$ radionuclide in the form of $[^{18}F]F_2$ gas is of great significance for labeling radiopharmaceuticals for positron omission tomography (PET). However, its production In high yield and with high specific radioactivity is still a challenge to overcome several problems on targetry. The aim of the present study was to develop a method suitable for the routine production of $[^{18}F]F_2$ for the electrophilic substitution reaction. Materials and Methods: The target was designed water-cooled aluminum target chamber system with a conical bore shape. Production of the elemental fluorine was carried out via the $^{18}O(p,n)^{18}F$ reaction using a two-step irradiation protocol. In the first irradiation, the target filled with highly enriched $^{18}O_2$ was irradiated with protons for $^{18}F$ production, which were adsorbed on the inner surface of target body. In the second irradiation, the mixed gas ($1%[^{19}F]F_2/Ar$) was leaded into the target chamber, fellowing a short irradiation of proton for isotopic exchange between the carrier-fluorine and the radiofluorine absorbed in the target chamber. Optimization of production was performed as the function of irradiation time, the beam current and $^{18}O_2$ loading pressure. Results: Production runs was performed under the following optimum conditions: The 1st irradiation for the nuclear reaction (15.0 bar of 97% enriched $^{18}O_2$, 13.2 MeV protons, 30 ${\mu}A$, 60-90 min irradiation), the recovery of enriched oxygen via cryogenic pumping; The 2nd irradiation for the recovery of absorbed radiofluorine (12.0 bar of 1% $[^{19}F]fluorine/argon$ gas, 13.2 MeV protons, 30 ${\mu}A$, 20-30 min irradiation) the recovery of $[^{18}F]fluorine$ for synthesis. The yield of $[^{18}F]fluorine$ at EOB (end of bombardment) was achieved around $34{\pm}6.0$ GBq (n>10). Conclusion: The production of $^{18}F$ electrophilic agent via $^{18}O(p,n)^{18}F$ reaction was much under investigation. Especially, an aluminum gas target was very advantageous for routine production of $[^{18}F]fluorine$. These results suggest the possibility to use $[^{18}F]F_2$ gas as a electrophilic substitution agent.

Method to Reduce the Activity Loss and Pain when Injecting 18F-Florbetaben (18F-Florbetaben 주사 시 Activity 손실과 통증 감소를 위한 방법)

  • Kwon, Hyeong Jin;Choi, Jin Wook;Lee, Hyeong Jin;Woo, Jae Ryong;Kim, Yoo Kyeong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.42-45
    • /
    • 2016
  • Purpose Neuracep is used to other diagnostic evaluations of the brain to estimate beta-amyloid neuritic plaque density in adult patients with cognitive impairment and inspected cognitive impairment. $^{18}F-Florbetaben$ specially has moderate lipophilicity and property of the added ethanol. It is the subject of interest of the patient pain and residual activity after injecting. Our study is effective injection method of the radiopharmaceutical and patient care. So it is for the highest quality image. Materials and Methods Patients were targeted 70 subjects, it was injected mean $259{\pm}74MBq$ to the patients ($^{18}F-FDG$: 20 subjects, $^{18}F-FP-CIT$: 20 subjects, $^{18}F-Florbetaben$: 30 subjects). After injection (reflusing 2 times, reflusing 3 times) using a 3-way set, it measured the residual activity. When injecting $^{18}F-Florbetaben$, we evaluated the effective injection methods(3-way set method and heparin cap method). The average residual activity after the injection was compared using a statistical analysis of SPSS 12.0(ANOVA, t-test analysis). Also, elemental analysis was performed on $^{18}F-Florbetaben$ by GC (Gas Chromatography). Results When reflusing 2 times measured residual activity as follows ($^{18}F-FDG$: 1.48 MBq, $^{18}F-FP-CIT$: 7.4 MBq, $^{18}F-Florbetaben$: 32.6 MBq). And when reflusing 3 times measured residual activity as follows ($^{18}F-FDG$: 1.85 MBq, $^{18}F-FP-CIT$: 3.7 MBq, $^{18}F-Florbetaben$: 36.3 MBq). There was a significant difference when reflusing 2 times(P < 0.05) and reflusing 3 times (P < 0.05). But when reflusing 3 times, there was no significant difference relation FDG and FP-CIT (P > 0.05). $^{18}F-Florbetaben$ Residual activity according to the injection method was a significant difference (P < 0.05). GC analysis results were measured ethanol: 207665 ppm and acceton: 377.4 ppm. Conclusion $^{18}F-Florbetaben$ was high residual activity compared to FDG and FP-CIT. Heparin cap method was effective when $^{18}F-Florbetaben$ was injected. $^{18}F-Florbetaben's$ ethanol component analysis was highly measured. So it is recommended that inject to 6 sec/ml or more in order to reduce the pain.

  • PDF

Synthesis of 18F-labeled 2-cyanobenzothiazole derivative for efficient radiolabeling of N-terminal cysteine-bearing biomolecules

  • Jung Eun Park;Jongho Jeon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.153-159
    • /
    • 2021
  • This article provides an efficient 18F-labeling protocol based on a rapid condensation reaction between 2-cyanobenzothiazole (CBT) and N-terminal cysteine-containing biomolecules. The 18F-labeled CBT (18F-1) was prepared by radiofluorination of the tosylated precursor 4 with 18-crown-6/K+/[18F]F- complex. Using the purified 18F-1, 18F-labeled peptide (18F-7) and protein (18F-8) could be synthesized efficiently under mild conditions. This strategy would provide a convenient approach for rapid and site-specific 18F-labeling of various peptides and proteins for in vivo imaging and biomedical applications.

[18F]Labeled 2-nitroimidazole derivatives for hypoxia imaging

  • Seelam, Sudhakara Reddy;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.73-83
    • /
    • 2016
  • Imaging hypoxia using positron emission tomography (PET) is of great importance for cancer therapy. [$^{18}F$] Fluoromisonidazole (FMISO) was the first PET agent used for imaging tumor hypoxia. Various radiolabeled nitroimidazole derivatives such as [$^{18}F$]fluoroerythronitroimidazole (FETNIM), [$^{18}F$]1-${\alpha}$-D-(2-deoxy-2-fluoroarabinofuranosyl)-2-nitroimidazole(FAZA), 2-(2-nitroimidazol-1-yl)-N-(3,3,3-[18F]-trifluoropropyl)acetamide ([$^{18}F$]EF-3), [$^{18}F$]2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide (EF-5), 3-[$^{18}F$]fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-1,2,3,-triazol-1-yl)-propan-1-ol ([$^{18}F$]HX-4), and [$^{18}F$]fluoroetanidazole (FETA) were developed successively. However, these imaging agents still produce PET images with limited resolution; the lower blood flow in hypoxic tumors compared to normoxic tumors results in low uptake of the agents in hypoxic tumors. Thus, the development of better imaging agents is necessary.

High Yielding [18F]Fluorination Method by Fine Control of the Base

  • Lee, Sang-Ju;Oh, Seung-Jun;Chi, Dae-Yoon;Moon, Dae-Hyuk;Ryu, Jin-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2177-2180
    • /
    • 2012
  • New [$^{18}F$]F-fluorination methods using a minimized amount of precursor has been developed by controlling the base concentration. In the first method, pre-conditioning of the anion exchange cartridge with $K_2CO_3$ solution or water was carried out. The trapped [$^{18}F$]fluoride on the cartridge was then eluted by KOMs or KOTf solution. [$^{18}F$]F-Fluorination could be performed without additional base. In the second method, the QMA cartridge was preconditioned with KOMs solutions. Trapped [$^{18}F$]fluoride on the QMA was then eluted with KOMs and additional base, such as KOH, $K_2CO_3$, and $KHCO_3$, was added into the reaction vessel. Method 1 showed a [$^{18}F$]F-incorporation yield of 20.9% for [$^{18}F$]FLT synthesis with 5 mg of precursor. Unlike method 1, a [$^{18}F$]F-incorporation yield of 91.4% was achieved from the same amount of precursor in method 2.

A Novel Melanin-Targeted 18F-PFPN Positron Emission Tomography Imaging for Diagnosing Ocular and Orbital Melanoma

  • Yiyan Wang;Xinghua Wang;Jie Zhang;Xiao Zhang;Yang Cheng;Fagang Jiang
    • Korean Journal of Radiology
    • /
    • v.25 no.8
    • /
    • pp.742-748
    • /
    • 2024
  • Objective: 18F-N-(2-(Diethylamino)ethyl)-5-(2-(2-(2-fluoroethoxy)ethoxy)ethoxy) picolinamide (18F-PFPN) is a novel positron emission tomography (PET) probe designed to specifically targets melanin. This study aimed to evaluate the diagnostic feasibility of 18F-PFPN in patients with ocular or orbital melanoma. Materials and Methods: Three patients with pathologically confirmed ocular or orbital melanoma (one male, two females; age 41-59 years) were retrospectively reviewed. Each patient underwent comprehensive 18F-PFPN and 18F-fluorodeoxyglucose (18F-FDG) PET scans. The maximum standardized uptake value (SUVmax) of the lesion and the interference caused by background tissue were compared between 18F-PFPN and 18F-FDG PET imaging. In addition, the effect of intrinsic pigments in the uvea and retina on the interpretation of the results was examined. The contralateral non-tumorous eye of each patient served as a control. Results: All primary tumors (3/3) were detected using 18F-PFPN PET, while only two primary tumors were detected using 18F-FDG PET. Within each lesion, the SUVmax of 18F-PFPN was 2.6 to 8.3 times higher than that of 18F-FDG. Regarding the quality of PET imaging, the physiological uptake of 18F-FDG PET in the brain and periocular tissues limited the imaging of tumors. However, 18F-PFPN PET minimized this interference. Notably, intrinsic pigments in the uvea and retina did not cause abnormal concentrations of 18F-PFPN, as no anomalous uptake of 18F-PFPN was detected in the healthy contralateral eyes. Conclusion: Compared to 18F-FDG, 18F-PFPN demonstrated higher detection rates for ocular and orbital melanomas with minimal interference from surrounding tissues. This suggests that 18F-PFPN could be a promising clinical diagnostic tool for distinguishing malignant melanoma from benign pigmentation in ocular and orbital melanomas.

Imaging of Tumor Cell Proliferation using Radiofluorinated Ethyluracil and Deoxyadenosine (Radiofluorinated Ethyluracil과 Deoxyadenosine을 이용한 종양세포 증식의 영상화에 대한 연구)

  • Kim, Chang-Guhn;Yang, David J.;Kim, E. Edmund
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.4
    • /
    • pp.532-540
    • /
    • 1996
  • 목적 : 종양세포의 증식을 평가하기 위해 radiofluorinated ethyluracil (FEU)과 deoxyadenosine analogue(FAD)를 합성하여 종양의 영상화를 시도하였다. 대상 및 방법 : 5-(2-Fluoroethyl)uracil ([$^{18}F$]FEU)은 2, 4-dimethoxy-5-(2-hydroxyethyl) pyrimidine을 $K^{18}F$와 처리한 후 HBr로 가수분해하여 얻었으며 Fluorodeoxyadenosine은 adenosine의 triacetylated analogue를 $K^{18}F$와 처리하여 얻었다. 생물학적 조직분포는 유방암 세포(13762 NF, 100,000 cells per rat, im)를 쥐에 접종한 후 0.5, 1, 2 및 4시간에 주요장기를 적출하여 %ID/g을 측정하고 자가방사영상은 방사성의약품 투여 45분 후에 얻었다. PET 영상은 VX-2 종양을 접종한 가토를 이용하여 얻었다. In vitro cell proliferation assay는 사람의 말초단핵구를 이용하였다. 결 과 : In vitro assay상 ([$^{18}F$]FEU는 세포증식시 DNA/RNA에 결합함을 시사하였다. ([$^{18}F$]FAD와 ([$^{18}F$]FEU의 종양/비종양 방사능 섭취비는 시간경과에 따라 증가하였으며 ([$^{18}F$]FAD와 ([$^{18}F$]FEU를 이용한 자가방사영상과 ([$^{18}F$]FEU를 이용한 PET 영상에서 종양을 잘 관찰할 수 있었다. 결 론 : ([$^{18}F$]FAD 및 ([$^{18}F$]FEU를 이용하여 종양세포의 증식을 PET 영상에서 평가할 수 있으리라 사료된다.

  • PDF

Optimization of Automated Solid Phase Extraction-based Synthesis of [18F]Fluorocholine (고체상 추출법을 기반으로 한 [18F]Fluorocholine 합성법의 최적화 연구)

  • Jun Young PARK;Jeongmin SON;Won Jun KANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.261-268
    • /
    • 2023
  • [18F]Fluorocholine is a radiopharmaceutical used non-invasively in positron emission tomography to diagnose parathyroid adenoma, prostate cancer, and hepatocellular carcinoma by evaluating the choline metabolism. In this study, a radiolabeling method for [18F]fluorocholine was optimized using a solid phase extraction (SPE) cartridge. [18F]Fluorocholine was labeled in two steps using an automated synthesizer. In the first step, dibromomethane was reacted with [18F]KF/K2.2.2/K2CO3 to obtain the intermediate [18F]fluorobromomethane. In the second step, [18F]fluorobromomethane was passed through a Sep-Pak Silica SPE cartridge to remove the impurities and then reacted with N,N-dimethylaminoethanol (DMAE) in a Sep-Pak C18 SPE cartridge to label [18F]fluorocholine. The reaction conditions of [18F]fluorocholine were optimized. The synthesis yield was confirmed according to the number of silica cartridges and DMAE concentration. No statistically significant difference in the synthesis yield of [18F]fluorocholine was observed when using four or three silica cartridges (P>0.05). The labeling yield was 11.5±0.5% (N=4) when DMAE was used as its original solution. On the other hand, when diluted to 10% with dimethyl sulfoxide, the radiochemical yield increased significantly to 30.1±5.2% (N=20). In conclusion, [18F]Fluorocholine for clinical use can be synthesized stably in high yield by applying an optimized synthesis method.

Improved Radiochemical Yields, Reliability and Improvement of Domestic $^{18}F$-FDG Auto Synthesizer (국산 $^{18}F$-FDG Auto Sysnthesizer의 수율 향상과 성능 개선)

  • Park, Jun-Hyung;Im, Ki-Seop;Lee, Hong-Jin;Jeong, Kyung-Il;Lee, Byung-Chul;Lee, In-Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.147-151
    • /
    • 2009
  • Purpose: 2-[$^{18}F$]Fluoro-2-deoxy-D-glucose ([$^{18}F$]FDG) particularly plays as a important role in Positron Emission Tomography (PET) imaging in nuclear medicine. Domestic [$^{18}F$]FDG auto synthesizers are installed in Seoul National University Bundang Hospital (SNUBH) at June 2008, these modules were known that it's synthetic yields were guaranteed in average $45{\pm}5%$ so far. To improve yields and convenience of domestic [$^{18}F$]FDG auto synthesizer, numerous trials in reaction time, base concentration, pressure and temperature were performed to increase [$^{18}F$]FDG yields. Materials and Methods: Several synthetic factors (temperature, time and pressure) and shortcoming were corrected based on many evaporation test. Syringe dispensing of tetra-butylammonium bicarbonate (TBAB) was replaced with micro pipette to prepare tetrabutyl ammonium fluoride salt ([$^{18}F$]TBAF). Troublesome refill of liquid nitrogen every 2 hours which was used to protect vacuum system was changed to charcoal cartridge, base guard filter. To monitor the volume of delivered $[^{18}O]OH_2$ from cyclotron by surveillance camera, we set up the volumetric vial on the cover of the module. In addition to, the recovery vial was added in [$^{18}F$]FDG production system to recover [$^{18}F$]FDG loss due to the leak of valve ($V_{13,14}$) in [$^{18}F$]FDG purification process. Results: When we used micro pipette for adding TBAB ($30\;{\mu}L$ in 12% $H_2O$ in acetonitrile), this quantitative dispensation has enabled to improve $5.5{\pm}1.7%$ residual fluorine-18 activity in fluorine separation cartridge compared to syringe adding. Besides, the synthetic yields of [$^{18}F$]FDG has increased $58{\pm}2.6%$ (n=19), $58{\pm}2.9%$ (n=14), $60%{\pm}2.5%$ (n=17) for 3 months. The life cycle of charcoal cartridge and base vacuum was 3 months prior to filling liquid nitrogen every 2 hours and additional side separator can prevent pump corrosion by organic solvent. After setting of volumetric indicator vial, the operator can easily monitor the total volume of irradiated $[^{18}O]OH_2$ from cyclotron. The recovery vial can be used for the stabilizer when an irregular [$^{18}F$]FDG loss was generated by the leak of valves ($V_{13,14}$). Conclusions: We has optimized appropriate synthetic conditions (temperature, time, pressure) in domestic [$^{18}F$]FDG auto synthesizer. In addition to, the remodeling with several accessories improve yields of domestic [$^{18}F$]FDG auto synthesizer with reliable reproducibility.

  • PDF

Preoperative Nodal 18F-FDG Avidity Rather than Primary Tumor Avidity Determines the Prognosis of Patients with Advanced Gastric Cancer

  • Kwon, Hyun Woo;An, Liang;Kwon, Hye Ryeong;Park, Sungsoo;Kim, Sungeun
    • Journal of Gastric Cancer
    • /
    • v.18 no.3
    • /
    • pp.218-229
    • /
    • 2018
  • Purpose: This study investigated whether the metabolic avidity of primary tumors and/or metastatic lymph nodes (LNs) measured by $^{18}F$-fluorodeoxyglucose ($^{18}F-FDG$) positron emission tomography/computed tomography (PET/CT) was related to survival after surgery in patients with advanced gastric cancer (AGC). Materials and Methods: One hundred sixty-eight patients with AGC who underwent preoperative $^{18}F-FDG$ PET/CT and curative resection were included. The $^{18}F-FDG$ avidity of the primary gastric tumor and LNs was determined quantitatively and qualitatively. The diagnostic performance of $^{18}F-FDG$ PET/CT was calculated, and the prognostic significance of $^{18}F-FDG$ avidity for recurrence-free survival (RFS) and overall survival (OS) was assessed. Results: In all, 51 (30.4%) patients experienced recurrence, and 32 (19.0%) died during follow-up (median follow-up duration, 35 months; range, 3-81 months); 119 (70.8%) and 33 (19.6%) patients showed $^{18}F-FDG$-avid primary tumors and LNs, respectively. $^{18}F-FDG$ PET/CT showed high sensitivity (73.8%) for the detection of advanced pathologic T ($pT{\geq}3$) stage and high specificity (92.2%) for the detection of advanced pN (${\geq}2$) stage. $^{18}F-FDG$ avidity of LNs was significantly associated with RFS (P=0.012), whereas that of primary tumors did not show significance (P=0.532). Univariate and multivariate analyses revealed that $^{18}F-FDG$ avidity of LNs was an independent prognostic factor for RFS (hazard ratio=2.068; P=0.029). Conclusions: $^{18}F-FDG$ avidity of LNs is an independent prognostic factor for predicting RFS. Preoperative $^{18}F-FDG$ PET/CT can be used to determine the risk and prognosis of patients with AGC after curative resection.