• Title/Summary/Keyword: $(La,Sr)MnO_3$

Search Result 205, Processing Time 0.023 seconds

Study on the reducibility of substituted $LaMnO_3$ (치환된 $LaMnO_3$의 환원반응성에 대한 연구)

  • Lee, Sang-Beom;Jeon, Hyun-Pyo
    • The Journal of Natural Sciences
    • /
    • v.14 no.2
    • /
    • pp.41-54
    • /
    • 2004
  • $LaMnO_3$ and A site substituted $La_{0.9}Sr_{0.1}MnO_3$(a=$5.33\AA$, c=$13.27\AA$), B site substituted $LaMn_{0.9}Cu_{0.1}O_3$(a=$5.52\AA$, c=$13.31\AA$) mixed oxides were prepared by Citrate sol-gel method. The powder X-ray diffraction patterns of these oxides were indexed with single phase hexagonal perovskite structures. According to the TRR result, oxygen stoichiometry of these oxides were oxidative nonstoichiometry as like $LaMnO_{3.16}$, $La_{0.9}Sr_{0.1}MnO_{3.10}$ and $LaMn_{0.9}Cu_{0.1}O_{3.14}$ Reduction reactions of un-substituted $LaMnO_3$ was two steps, but specific site(A site of B site) partially substituted $LaMnO_3$ oxides were procees to three reactions.

  • PDF

Effect of Co Dopant on the (La, Sr)$MnO_3$ Cathode for Solid Oxide Fuel Cell (고체산화물 연료전지용 (La, Sr)$MnO_3$ 양극에 대한 Co 첨가효과)

  • 김재동;김구대;이기태
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.612-616
    • /
    • 2000
  • The effect of Co dopant on the (La, Sr)MnO3 cathode was investigated. La2Zr2O7 and SrZrO3 were formed as the reaction products between YSZ and LSMC. The reactivity of LSMC with YSZ increased with increasing Co content. However, the cathodic polarization resistance decreased with increasing Co doping. Therefore, doping Co at Mn site in the (La, Sr)MnO3 cathode was effective on controlling the polarization resistance of the cathode. The polarization property of LSMC-YSZ composite(60 wt%: 40 wt%) cathode was better than that of LSMC single cathode.

  • PDF

High Temperature Electrical Conductivity of Perovskite La0.98Sr0.02MnO3 (페로프스카이트 $La_{0.98}Sr_{0.02}MnO_3$의 고온전기특성)

  • 김명철;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.900-904
    • /
    • 1992
  • High temperature electrical conductivity was measured for perovskite La0.98Sr0.02MnO3 at 200~130$0^{\circ}C$ as a function of Po2 and 1/T. Perovskite La1-xSrxMnO3 system is the typical oxygen electrode in solid oxide fuel cell (SOFC). Acetate precursors were used for the preparation of mixed water solution and the calcined powders were reacted with Na2CO3 flux in order to obtain highly reactive powders of perovskite La0.98Sr0.02MnO3. The relative density was greatly increased above 90% because of the homogeneous sintering. From the conductivity ($\sigma$)-temperature and conductivity-Po2 at constant temperature, the defect structure of La0.98Sr0.02MnO3 was discussed. From the slope of 1n($\sigma$) vs 1/T, the activation energy of 0.069 and 0.108eV were evaluated for above 40$0^{\circ}C$, respectively. From the relationship between $\sigma$ and Po2, it was found that the decomposition of La0.98Sr0.02MnO3 was occurred at 10-15.5 atm(97$0^{\circ}C$) and 10-11 atm(125$0^{\circ}C$). It is supposed that the improvement of p-type conductivity may be leaded by the increase of Mn4+ concentration through the substitution of divalent/monovalent cations for La site in LaMnO3.

  • PDF

Fabrication of $(La, Sr)MO_3$ (M=Mn or Co)/YSZ Nanocomposite Thin Film Electrodes for the Exhaust Gas Purification by a Chemically-Modified Sol-Gel Process

  • Hwang, H.J.;Moon, J.W.;Awano, M.;Maeda, K.
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.201-206
    • /
    • 2001
  • $>LaMnO_3$$(La, Sr)MO_3$, and $(La, Sr)MO_3/YSZ$ gel films were deposited by spin-coating technique on scandium-doped zirconia (YSZ) substrate using the precursor solution prepared from $La(O-i-C_3H_7)_3$, $Co(CH_3COO)_2$or $Mn(O-i-C_3H_7)_2$,2-methoxyethanol, and polyethylene glycol. By heat-treating the gel films, the electrochemical cells, $(La, Sr)MnO_3{\mid}ScSZ{\mid}Pt$ were fabricated. The effect of polyethylene glycol on the microstructure evolution of $$LaCoO_3and $LaMnO_3$thin films was investigated, and NOx decomposition characteristics of the electrochemical cells were investigated at $500^{\circ}C$ to $600^{\circ}C$. By applying a direct current to the $(La, Sr)MnO_3{\mid}ScSZ{\mid}Pt$ electrochemical cell, good NOx conversion rate could be obtained relatively at low current value even if excess oxygen is included in the reaction gas mixture.

  • PDF

Effect of Starting Materials on the Characteristics of (La1-xSrx)Mn1+yO3−δ Powder Synthesized by GNP (GNP법에 의해 합성한 (La1-xSrx)Mn1+yO3−δ 분말의 출발물질에 따른 특성)

  • Lee, Mi-Jai;Kim, Sei-Ki;Jee, Mi-Jung;Choi, Byung-Hyun;Park, Sang-Sun;Lee, Kyung-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.52-57
    • /
    • 2007
  • We synthesized $(La_{1-x}Sr_x)MnO_3$ as a cathode for SOFC by glycine nitrate process (GNP) and knew the different properties of $(La_{1-x}Sr_x)MnO_3$ by using nitrate solution and oxide solution as a starting material. In case of using nitrate solution as a starting material, main crystal phase peak of $LaMnO_3$ increased as Sr content added up and a peak of $Sr_2MnO_4\;and\;La_2O_3$ was showed as a secondary phase. We added Mn excess to control a crystal phase. In this case, the electrical conductivity had a high value 210.3 S/cm at $700^{\circ}C$. On the other side, when we used oxide solution as a starting material, we found main crystal phase of $LaMnO_3$ to increase as Sr content added up and a peak of $La_2O_3$ as a secondary phase. Similary, we added Mn excess to control a crystal phase in this case. We knew $(La,Sr)MnO_3$ powder to sinter well and the electrical conductivity of the sintered body at $1200^{\circ}C$ for 4 h was 152.7 S/cm at $700^{\circ}C$. The sintered $(La,Sr)MnO_3$ powder at $1000^{\circ}C$ for 4 h got the deoxidization peak, depending on the temperature and in case of using nitrate solution as a starting material, the deoxidization peak was showed at $450^{\circ}C$ which is lower than used a oxide solution as a starting material. As a result, when $(La,Sr)MnO_3$ powder was synthesized to add Mn excess and to use nitrate solution as a starting material, we found it to have the higher deoxidization property and considered it as a cathode for SOFC properly. And we found it to have different electrical conductivity the synthesized $(La,Sr)MnO_3$ powder by using different starting materials like nitrate solution and oxide solution which influence a sintering density and crystal phase.

Cathode Characteristics in the Synthesis of $(La,\;Sr)MnO_{3+{\delta}$ of Precursor ($(La,\;Sr)MnO_{3+{\delta}$ 합성에 있어서 출발물질에 따른 양극특성)

  • Lee, Mi-Jai;Kim, Sei-Ki;Ji, Mi-Jung;Choi, Byung-Hyun;Park, Sang-Sun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.360-363
    • /
    • 2006
  • We synthesized $(La,\;Sr)MnO_{3+{\delta}$ as a cathode for SOFC by glycine nitrate process(GNP) and knew the different properties of $(La_{1-x}Sr_x)MnO_3$ by using nitrate solution and oxide solution as starting material. In case of using nitrate solution as a starting material, main crystal phase peak of $LaMnO_3$ increased as Sr content added up and a peak of $Sr_2MnO_4\;and\;La_2O_3$ was showed as a secondary phase. We added Mn excess to control a crystal phase. In this case, the electrical conductivity had a high value 210.3S/cm at $700^{\circ}C$ On the other side, when we used oxide solution as a starting material, we found main crystal phase of $LnMnO_3$ to increase as Sr content added up and a peak of $La_2O_3$ as a secondary phase. Similary, we added Mn excess to control a crystal phase in this case. We knew $(La,\;Sr)MnO_3$ powder to sinter well and the electrical conductivity of the sintered body at $1200^{\circ}C$ for 4hrs was 152.7s/cm at $700^{\circ}C$. The sintered $(La,\;Sr)MnO_3$ powder at $1000^{\circ}C$ for 4hrs got the deoxidization peak, depending on the temperature md in case of using nitrate solution as a start ing material the deoxidization peak was showed at $450^{\circ}C$ which is lower than used a oxide solution as a starting material. As a result, when $(La,\;Sr)MnO_3$ powder was synthesized to add Mn excess and to use nitrate solution as a starting material, we found it to have the higher deoxidization property and considered it as a cathode for m properly. And we found it to have different electrical conduct ivity the synthesized $(La,\;Sr)MnO_3$ powder by using different start ing materials like nitrate solution and oxide solution which influence a sintering density and crystal phase.

  • PDF

Cathodic Polarization of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ on $Ce_{0.8}Gd_{0.2}O_{1.9}$ Electrolyte ($Ce_{0.8}Gd_{0.2}O_{1.9}$ 전해질에서 $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ 양극의 과전압특성)

  • 윤희성;노의범;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.981-987
    • /
    • 1998
  • $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ as air electrode for soild oxide fuel cell was synthesized by a citrate process and its cathodic polarization was determinated by the current interruption method on the Gd-doped ceria as electrolyte. The addition of citric acid increased the exothermic heat for the formation of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ perovskite oxide. The degree of the initial particle agglomeration was affected by the exothermic heat. Also the increase of cal-cination temperature enlarged the particle size and the higher sintering temperature accelerated the den-sification of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ layer after its being painted on $Ce_{0.8}Gd_{0.2}O_{1.9}$ electrolyte. In this study $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ synthesized by citrate process of which the molar ratio of citric acid to metal nitrate was 2 calcined at $650^{\circ}C$ for 2hr and sintered at 1100 at $1200^{\circ}C$ for 4 hrs after slurry coating on Ce0.8Gd0.2O1.9 electrlyte showed the lowest cathodic polarization.

  • PDF

Preparation of La0.6Sr0.4MnO3 Thin Films by RF Magnetron Sputtering and Their Microstructure and Electrical Conduction Properties (RF 스퍼터법을 사용한 La0.6Sr0.4MnO3 박막 제조 및 미세구조와 전기전도 특성)

  • Park, Chang-Sun;Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.303-310
    • /
    • 2010
  • We fabricated $La_{0.6}Sr_{0.4}MnO_3$ thin films using radio frequency (RF) magnetron sputtering. They were grown on sapphire substrates with various deposition conditions. After the growth of the $La_{0.6}Sr_{0.4}MnO_3$ thin films, they were annealed at various temperatures to be crystallized. We successfully fabricated single phase $La_{0.6}Sr_{0.4}MnO_3$ thin films with high electrical conductivity. The room temperature resistivity was $1.5{\times}10^{-2}{\Omega}{\cdot}cm$. It can be considered that $La_{0.6}Sr_{0.4}MnO_3$ thin films are one of the feasible candidates for electrodes for integrated device applications.

Synthesis and Characterization of Layered Perovskite $La_{1+x}Sr_{2-x}Mn_2O_7$ Phases (층상구조형 Perovskite $La_{1+x}Sr_{2-x}Mn_2O_7$ 상의 합성 및 특성연구)

  • 송민석;서상일;이재열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.271-274
    • /
    • 1998
  • Metallic ferromagnet LA$_{1-x}$ Sr$_{x}$MnO$_3$ has received considerable attentions because of its metallic conductivity and giant magnetic resistivity. It is generally believed that layered perovskite SrO(LA$_{1-x}$ Sr$_{x}$MnO$_3$)$_{n}$ phase is insulating and shows no metallic transition. But recent report revealed that some single crystal SrO(LA$_{1-x}$ Sr$_{x}$MnO$_3$)$_{n}$ phase showed MR effect. In this study, layered perovskite SrO(LA$_{1-x}$ Sr$_{x}$MnO$_3$)$_2$ Phases were synthesized by solid state reaction at 140$0^{\circ}C$ in air atmosphere, for wide range of x and their phases were confirmed by X-ray diffraction. Electrical and magnetic properties were measured down to 10K and the possibility of MR effects was investigated.as investigated.

  • PDF

Crystal Structure and Electrical Transport Characteristics of ${La_{1-x}}{Sr_x}{MnO_{3-{\delta}}}$(0.19$\leq$x$\leq$0.31) Thin Films (${La_{1-x}}{Sr_x}{MnO_{3-{\delta}}}$(0.19$\leq$x$\leq$0.31) 박막의 결정구조 및 전기전도 특성)

  • Heo, H.;Lim, S.J.;Cho, N-H.
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.437-444
    • /
    • 2000
  • We investigated the effect of substrate temperature, chemical composition and post-deposition heat-treatment on the crystal structure and electrical transport of $La_{1-x}Sr_xMnO_{3-{\delta}}$(0.19${\leq}x{\leq}$0.31) thin films. As-prepared $La_{1-x}Sr_xMnO_{3-{\delta}}$ films grown at $500^{\circ}C$ by sputter techniques were found to have the pseudo-tetragonal system(a/c=0.97) and a highly preferential <001> orientation. The films were changed to be of the cubic system by post-deposition annealing at around $900^{\circ}C$. A main target of $La_{0.67}Sr_{0.33}MnO_3$ as well as auxliary targets of $La_{0.3}Sr_{0.7}MnO_3$ ceramics were co-sputtered to control the chemical composition of the film. The Sr content(x) of the film ranged from 0.19 to 0.31, depending on the number of the auxiliary target. When x increased from 0.19 to 0.31, the electrical resistivity of the film decreased and the transition temperature between metal and semiconductor shifted to higher temperature. With a magnetic field of 0.18 T, the magneto-resistance ratio (MR(%) = (${\rho}_o-{\rho}_H/{\rho}_H$) of the $La_{0.69}Sr_{0.31}MnO_3$ thin film was about 390%.

  • PDF