• Title/Summary/Keyword: $(1-x)BiNbO_4-xCaNb_2O_6$

Search Result 2, Processing Time 0.018 seconds

Microwave Dielectric Properties and Multilayer Characteristics of (1-x)BiNbO4-xCaNb2O6 Ceramics ((1-x)BiNbO4-xCaNb2O6 세라믹스의 마이크파 유전특성 및 적층체 특성)

  • Kim, Eung-Soo;Choi, Woong;Kim, Jong-Dae;Kang, Seung-Gu;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1190-1196
    • /
    • 2002
  • Microwave dielectric properties and multilayer characteristics $(1-x)BiNbO_4-xCaNb_2O_6$ (0${\le}$x${\le}$1.0) ceramics were investigated as a function of $CaNb_2O_6$ content. In the composition range of 0.25${\le}$x${\le}$0.75, the mixture phases of $BiNbO_4$ with stibotantalate structure and $CaNb_2O_6$ with columbite structure were detected and secondary phase or phase transition were not detected. Dielectric constant (K) of $(1-x)BiNbO_4-xCaNb_2O_6$ ceramics was largely dependent on the existing phase and could be estimated by the dielectric mixing rule calculated from maxwell equation. Typically, dielectric constant (K) of 26, quality factor (Qf) of 4300 GHz and Temperature Coefficient of resonant Frequency (TCF) of -18 ppm/${\circ}C$ were obtained for $0.5BiNbO_4-0.5CaNb_2O_6$ specimens with 0.8 wt% $CuV_2O_6$ sintered at 1000${\circ}C$ for 3h. The deviation of X-Y shrinkage and camber value of the multilayers obtained from $0.5BiNbO_4-0.5CaNb_2O_6$ green sheet sintered at 850∼950${\circ}C$ for 20 min. were smaller than those of $BiNbO_4$ multilayers.

Microwave Dielectric Properties of (Pb,Ca)[(Fe,Nb)Sn]$O_3$ with CuO-$Bi_{2}O_{3}$Additives (CuO-$Bi_{2}O_{3}$첨가에 의한 (Pb,Ca)[(Fe,Nb)Sn]$O_3$세라믹스의 마이크로파 유전 특성)

  • 하종윤;최지원;윤석진;윤기현;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.563-566
    • /
    • 2000
  • The effect of CuO and CuO-B $i_2$ $O_3$ additives on microwave dielectric properties of (P $b_{0.45}$C $a_{0.55}$)[F $e_{0.5}$N $b_{0.5}$)$_{0.9}$S $n_{0.1}$] $O_3$were investigated to decrease the sintering temperature for usage of Low Temperature Co-firing Ceramics (LTCC). The (P $b_{0.45}$C $a_{0.55}$)[F $e_{0.5}$N $b_{0.5}$)$_{0.9}$S $n_{0.1}$] $O_3$ceramics was sintered at 11$65^{\circ}C$. In order to decrease the sintering temperature, CuO and Cuo-B $i_2$ $O_3$ were added in the (Pb,Ca)[(Fe,Nb)Sn] $O_3$ with CuO-B $i_2$ $O_3$. For the addition of 0.4 wt.% CuO, the sintered density and the dielectric constant of the ceramics were revealed the maximum values of the 6.06g/c $m^2$ and 83 respectively and temperature coefficient of resonance frequency ($\tau$$_{f}$) shifted to the positive value. As increasing B $i_2$ $O_3$to the (Pb,Ca)[(Fe,Nb)Sn] $O_3$ with CuO-B $i_2$ $O_3$with 0.2 wt.% CuO, the sintered density, the $\varepsilon$$_{r}$ and the Q was decreased, and $\tau$$_{f}$ was minimized at 0.2 wt.% CuO, and 0.2 wt.% B $i_2$ $O_3$. For this composition, dielectric properties were $\varepsilon$$_{r}$ of 81, Q. $f_{0}$ of 4400 GHz, and $\tau$$_{f}$ of 5 ppm/$^{\circ}C$ at sintering temperature of 100$0^{\circ}C$. the relationship between the microstructure and properties of ceramics was studied by X-ray diffraction(XRD), scanning electron microscopy(SEM).copy(SEM).oscopy(SEM).copy(SEM).EM).

  • PDF