• Title/Summary/Keyword: #hydraulic anisotropy

Search Result 40, Processing Time 0.022 seconds

Evaluation of Rock Discontinuity Roughness Anisotropy based on Digital 3D Point Cloud Data (디지털 3차원 점군데이터 기반 암반 불연속면 거칠기 이방성 평가)

  • Taehyeon Kim;Kwang Yeom Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.495-507
    • /
    • 2023
  • The roughness of discontinuity significantly influences the mechanical characteristics of rock masses and extensively affects thermal and hydraulic behaviors. In this study, we utilized photogrammetry to generate 3D point cloud data for discontinuity and applied this data to characterize the roughness of discontinuity. The discontinuity profiles, reconstructed from the 3D point cloud data, were compared with those manually measured using a profile gauge. This comparison served to validate the accuracy and reliability of the acquired point cloud data in replicating the actual configurations of rock surfaces. Subsequent to this validation, influence of the number of profiles for representative JRC assessment was further investigated followed by suggestion of roughness anisotropy evaluation method with application of it to actual rock discontinuity surfaces.

Estimation of 3-D Hydraulic Conductivity Tensor for a Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea (경상분지 백악기 화강암 암반에 대한 삼차원 수리전도텐서 추정사례)

  • Um, Jeong-Gi;Lee, Dahye
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.41-57
    • /
    • 2022
  • A workflow is presented to estimate the size of a representative elementary volume and 3-D hydraulic conductivity tensor based on fluid flow analysis for a discrete fracture network (DFN). A case study is considered for a Cretaceous granitic rock mass at Gijang in Busan, Korea. The intensity and size of joints were calibrated using the first invariant of the fracture tensor for the 2-D DFN of the study area. Effective hydraulic apertures were obtained by analyzing the results of field packer tests. The representative elementary volume of the 2-D DFN was determined to be 20 m square by investigating the variations in the directional hydraulic conductivity for blocks of different sizes. The directional hydraulic conductivities calculated from the 2-D DFN exhibited strong anisotropy related to the hydraulic behavior of the study area. The 3-D hydraulic conductivity tensor for the fractured rock mass of the study area was estimated from the directional block conductivities of the 2-D DFN blocks generated for various directions in 3-D. The orientations of the principal components of the 3-D hydraulic conductivity tensor were found to be identical to those of delineated joint sets in the study area.

Experimental study on the mechanical property of coal and its application

  • Jiang, Ting T.;Zhang, Jian H.;Huang, Gang;Song, Shao X.;Wu, Hao
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • Brazilian splitting tests, uniaxial compression tests and triaxial compression tests are carried out on the coal samples cored from Shanxi group $II_1$ coal seam of Jiaozuo coal mine, Henan province, China, to obtain their property parameters. Considering the bedding has notable effect on the property parameter of coal, the samples with different bedding angles are prepared. The effects of bedding on the anisotropic characteristics of the coal seam are investigated. A geological geomechanical model is built based on the geology characteristics of the Jiaozuo coal mine target reservoir to study the effects of bedding on the fracture propagations during hydraulic fracturing. The effects of injection pressure, well completion method, in-situ stress difference coefficient, and fracturing fluid displacement on the fracture propagations are investigated. Results show bedding has notable effects on the property parameters of coal, which is the key factor affecting the anisotropy of coal. The hydraulic cracks trends to bifurcate and swerve at the bedding due to its low strength. Induced fractures are produced easily at the locations around the bedding. The bedding is beneficial to form a complicated fracture network. Experimental and numerical simulations can help to understand the effects of bedding on hydraulic fracturing in coalbed methane reservoirs.

Numerical Analysis of the Change in Groundwater System with Tunnel Excavation in Discontinuous Rock Mass (불연속 암반에서의 터널굴착에 따른 지하수체계 변화에 대한 수치해석적 연구)

  • Park, Jung-Wook;Son, Bong-Ki;Lee, Chung-In;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.44-57
    • /
    • 2008
  • In this study, a 2D finite-element analysis, using the SEEP/W program, was carried out to estimate the amount of groundwater flawing into a tunnel, as well as the groundwater tables around wetland areas during and after a tunnel excavation through rock mass. Four sites along the Wonhyo-tunnel in Cheonseong Mountain (Gyeongnam, Korea) were analysed, where the model damain of the tunnel included both wetland and fault zone. The anisotropy of the hydraulic conductivities of the rock mass was calculated using the DFN model, and then used as an input parameter for the cantinuum model. Parametric study on the influencing factors was perofrmed to minimize uncertainties in the hydraulic properties. Moreover, the volumetric water content and hydraulic conductivity functions were applied ta the model to reflect the ability of a medium ta store and transport water under both saturated and unsaturated conditions. The conductivity of fault zone was assumed ta be $10^{-5}m/sec\;or\;10^{-6}m/sec$ and the conductivity of grouting zone was assumed as 1/10, 1/50 or 1/100 of the conductivity of rock mass. Totally $6{\sim}8$ cases of transient flow simulation were peformed at each site. The hydraulic conductivities of fault zone showed a significant influence on groundwater inflow when the fault zone crossed the tunnel. Also, groundwater table around wetland maintained in case that the hydraulic conductivity of grouting zone was reduced ta be less than 1/50 of the hydraulic conductivity of rock mass.

Turbulent Flow through a Square Straight and Curved Duct with Reynolds Stress Models (정사각 직관과 $180^{\circ}$ 곡관내 난류유동의 레이놀즈응력모형 적용)

  • Chun, Kun-Ho;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.771-776
    • /
    • 2000
  • Fine grid calculations are reported for the developing turbulent flow in a straight duct and a curved duct of square cross-section with a radius of curvature to hydraulic diameter ratio ${\delta}=R_c/H_H=3.357$ and a bend angle of 180 deg. A sequence of modeling refinements is introduced; the replacement of wall function by a fine mesh across the sublayer and a low Reynolds number second moment closure up to the near wall sublayer in which the non-linear return to isotropy model and the cubic-quasi-isotropy model for the pressure strain are adopted; and the introduction of a multiple source model for the exact dissipation rate equation. Each refinement is shown to lead to an appreciable improvement in the agreement between measurement and computation.

  • PDF

Program Development to Evaluate Permeability Tensor of Fractured Media Using Borehole Televiewer and BIPS Images and an Assessment of Feasibility of the Program on Field Sites (시추공 텔리뷰어 및 BIPS의 영상자료 해석을 통한 파쇄매질의 투수율텐서 계산 프로그램 개발 및 현장 적용성 평가)

  • 구민호;이동우;원경식
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.187-206
    • /
    • 1999
  • A computer program to numerically predict the permeability tensor of fractured rocks is developed using information on discontinuities which Borehole Televiewer and Borehole Image Processing System (BIPS) provide. It uses orientation and thickness of a large number of discontinuities as input data, and calculates relative values of the 9 elements consisting of the permeability tensor by the formulation based on the EPM model, which regards a fractured rock as a homogeneous, anisotropic porous medium. In order to assess feasibility of the program on field sites, the numerically calculated tensor was obtained using BIPS logs and compared to the results of pumping test conducted in the boreholes of the study area. The degree of horizontal anisotropy and the direction of maximum horizontal permeability are 2.8 and $N77^{\circ}CE$, respectively, determined from the pumping test data, while 3.0 and $N63^{\circ}CE$ from the numerical analysis by the developed program. Disagreement between two analyses, especially for the principal direction of anisotropy, seems to be caused by problems in analyzing the pumping test data, in applicability of the EPM model and the cubic law, and in simplified relationship between the crack size and aperture. Aside from these problems, consideration of hydraulic parameters characterizing roughness of cracks and infilling materials seems to be required to improve feasibility of the proposed program. Three-dimensional assessment of its feasibility on field sites can be accomplished by conducting a series of cross-hole packer tests consisting of an injecting well and a monitoring well at close distance.

  • PDF

Relationship between Groundwater Level Changes and Aquifer Characteristics during Pumping at a Radial Collector Well (방사형 집수정 취수시 대수층 특성에 따른 지하수위의 변화)

  • Choi, Myoung-Rak;Lee, Ho-Jeong;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.279-288
    • /
    • 2019
  • The groundwater drawdown at each monitoring well near a radial collector well along Anseong Stream, Korea, was measured and compared with the calculated drawdown using the mirror well concept. The drawdown calculation is performed by treating the collector well as a large vertical well in a homogeneous isotropic aquifer. The measured drawdown at each monitoring well is slightly different from the calculated value due to anisotropy in the hydraulic conductivity and aquifer thickness. The difference between the measured and calculated values at Well OW-7 is large, reaching approximately 48 cm, because a horizontal well is not installed along this direction. Sensitivity analysis of the hydraulic conductivity and aquifer thickness indicates that the hydraulic conductivity is more sensitive to groundwater level changes. Groundwater level changes become a concern when a radial collector well with a large pumping rate capacity is installed, which highlights the need to thoroughly investigate the aquifer characteristics in the surrounding area.

A Study on Applicability of Equivalent Continuum Flow Model in DFN Media (DFN 매질에 대한 등가연속체 유동모델의 적용 가능성 평가에 관한 연구)

  • Lee, Dahye;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.303-311
    • /
    • 2017
  • The correlation analysis between the results obtained from DFN flow model and equivalent continuum flow model were conducted on total of 72 DFN blocks having various fracture geometry and domain size. A strong linear relation seems to exist between the two approaches under condition that normalized relative error for continuum behavior (ER) is less than 0.2, and the results from both methods are found to almost identical. To explore the field applicability of equivalent continuum flow model in DFN media, a total of 48 numerical schemes related to inflow of underground circular openings were implemented under various DFN configurations. The equivalent continuum flow model in DFN media with a constant hydraulic aperture was evaluated as valid. However, as the anisotropy increases due to variation of the hydraulic aperture, the results are likely to be overestimated compare to the DFN flow model.

Analysis of Analytical Models and Numerical Model for Evaluating Induced Infiltration Rate (유도침투량의 정량화를 위한 해석모형과 수치모형의 분석)

  • Lee, Do-Hun;Lee, Eun-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.301-310
    • /
    • 1999
  • In this paper a numerical model and two analytical models in the hydraulically connected stream-aquifer system were analyzed to compare the induced infiltration rate curves derived from each model. And we also examined the effects of anisotropy of hydraulic conductivity and the direction of the ambient ground water flow on the quantification of the induced infiltration rate. The induced infiltration rate curve determined by models is very simple and useful for estimating the induced infiltration rate since it contains only four physical variables such as the induced infiltration rate, the pumping rate, the distance between the pumping well and the stream, and the ambient ground water flow rate. Under the conditions tested in this paper the induced infiltration rate curves resulted from the Wilson's analytical model and FEWA numerical model were in good agreement, and the anisotropic ratio of hydraulic conductivity was evaluated as a physical factor which influences the behaviour of the induced infiltration rate curve. The methods and results of the paper might Icad to improve the understanding of the induced infiltration phenomenon and can be applied to the planning and disign of pumping well and the optimal determination of the induced infiltration rate and pumping rate for water quality management of the water supply wells.

  • PDF

Understanding Hydrogeologic Characteristics of a Well Field of Pyosun in Jeju Volcanic Island of Korea

  • Lee, Jin-Yong;Lee, Gyu-Sang;Song, Sung-Ho
    • Journal of the Korean earth science society
    • /
    • v.29 no.5
    • /
    • pp.396-407
    • /
    • 2008
  • Hydrogeologic properties of a well field around middle mountainous areas in Pyosun, Jeju volcanic island were examined based on water level monitoring, geologic logging and pumping test data. Due to the alternating basaltic layers with varying permeability in the subsurface, it is difficult to analyze the hydraulic responses to artificial pumping and/or natural precipitation. The least permeable layer, detrital materials with clay, is found at a depth of 200 m below surface, but it is not an upper confining bed for lower main aquifer. Nevertheless, this layer may serve as a natural barrier to vertical percolation and to contaminant migration. Water levels of the production wells are dominantly affected by pumping frequently, while those of the remote observation wells are controlled by ambient precipitation. Results of pumping tests revealed a possible existence of horizontal anisotropy of transmissivity. However, some results of this study include inherent limitations enforced by field conditions such as the consistent of groundwater production and the set of time periods for the cessation of the pumping prior to pumping tests.