• Title/Summary/Keyword: "On-water"

Search Result 61,381, Processing Time 0.072 seconds

Evaluation of Coagulation Characteristics of Fe(III) and Al(III) Coagulant using On-line Monitoring Technique (On-line 모니터링 기법을 이용한 Al염계와 Fe염계 응집제의 응집특성 평가)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Kim, Sang-Goo;Seo, Chang-Dong;Hwang, Young-Do
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.715-722
    • /
    • 2014
  • Effects of coagulation types on flocculation were investigated by using a photometric dispersion analyzer (PDA) as an on-line monitoring technique in this study. Nakdong River water were used and alum and ferric chloride were used as coagulants. The aim of this study is to compare the coagulation characteristics of alum and ferric chloride by a photometric dispersion analyzer (PDA). Floc growing rates ($R_v$) in three different water temperatures ($4^{\circ}C$, $16^{\circ}C$ and $30^{\circ}C$) and coagulants doses (0.15 mM, 0.20 mM and 0.25 mM as Al, Fe) were measured. The floc growing rate ($R_v$) by alum was 1.8~2.8 times higher than that of ferric chloride during rapid mixing period, however, for 0.15 mM~0.25 mM coagulant doses the floc growing rate ($R_v$) by ferric chloride was 1.1~2.3 times higher than that of alum in the slow mixing period at $16^{\circ}C$ water temperature. Reasonable coagulant doses of alum and ferric chloride for turbidity removal were 0.1 mM (as Al) and 0.2 mM (as Fe), respectively, and the removal efficiency of those coagulant doses showed 94% for alum and 97% for ferric chloride. The appropriate coagulant dose of alum and ferric chloride for removing dissolved organic carbon (DOC) showed about 0.3 mM (as Al, Fe) and at this dosage, DOC removal efficiencies were 36% and 44%, and ferric chloride was superior to the alum for removal of the DOC in water.

A Study on the Quality Improvement of Raw-Water Using Submerged Biofilter (생물막공정에 의한 상수원수의 수질개선에 관한 연구)

  • Lee, Soo-sik;Ahn, Seung-seop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.81-94
    • /
    • 1999
  • This study aims at a proposal of the plan that can improve raw water quality by an experimental study using influent water of Nak-dong river, which has been used as raw water for drinking in U-city, through the establishment of the submerged biofilter process PILOT PLANT of media packing channel method. From the analysis of removal efficiency for each water quality item of the collected sample, following results are obtained. First of all, the removal rate of suspended material, BOD, COD, T-N, TOC, turbidity, and $NH_3$ -N appear 82%, 78%, 42%, 15%, 57%, 43%, 54%, and 55% respectively and it is known that the submerged biofilter process of media packing channel method takes effects on water quality improvement from the above analysis results of water treatment efficiency. And the analyzed results for water temperature, residence time, and activities of microorganism, which can be the factors affect on water quality improvement, are as follows. 1) The removal rate variation of SS, BOD, and COD attendant on water temperature change is examined and it is known that the removal rate increases at $13^{\circ}C$ or above. 2) The removal rate of SS, BOD, and COD attendant on residence time is most active in the range of 0~18hr, 0~1.8hr, 0~2.7hr respectively, so it is found that the removal rate becomes smaller after 2.7hr. 3) From the examination of microorganism activity with the abundance of normal bacteria, it is found that the floating bacteria decrease as the flow distance from raw water inflow point of PILOT PLANT increases, and the adhesive bacteria have no concern with the flow distance. And it its known that the biomass of fine algae decreases as the flow distance from the raw water inflow point of PILOT PLANT increases from the examination with Chl-a.

  • PDF

A Study On The Water Quality in Rural Area in Chuncheon-si (춘천시 일부 농촌 지역의 음용수 수질에 관한 조사연구)

  • Park, Sujung;Kim, Moon Kyung;Ki, Young Sun;Oh, So Rin;Shin, Mi-yeon;Oh, Ji Yoon;Byeon, Jae Cheol;Lee, Seong Min;Jung, Eun Hee;Kim, Eun Mi;Zoh, Kyung-Duk;Choi, Kyungho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.431-436
    • /
    • 2006
  • This study was conducted in the summer of 2005 in Shindong-myeon, Chuncheon-si, Gangwon-do to assess the quality of drinking water and to evaluate their potential pollutants. Ninety four water samples were collected from three classes of water supplies such as simple piped water, supplied own water and others (Supplied local water). Most residents used simple piped water (72.63%). 31.25% residents thought the water quality was bad and landfill was the main source of pollution that affected water quality. To correspond this perception, water quality was measured according to Drinking Water Quality Standard. The general bacteria, coliforms, and $NO_3-N$ exceeded the standard but the water qualities in these four areas were suitable for Drinking Water Quality Standard. The simple piped water showed low mean concentration of excess rate compared to supplied own piped water except general bacteria. Hardness, pH, and $NO_3-N$ showed significantly higher effects on drinking water quality. To evaluate the effect of effluent from landfill, water quality was measured according to distance and altitude. However, there was no effect of landfill effluent. To find out the effect of rainfall, we compared water quality of the year 2003 with that of 2005. The result showed significant differences in hardness and $NO_3-N$ concentration. This study confirmed that $NO_3-N$, coliforms, and general bacteria are main pollutant of water supply in rural community. Therefore, it is necessary to regularly maintain simple piped water supply, supplement sewer facilities, and educate residents about public health risk associated with drinking water in rural area.

WATER TURNOVER OF GROWING CATTLE FED FRESH CUT GRASS OR HAY AND GRAZED ON PASTURE

  • Sekine, J.;Morita, Z.;Asahida, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.1 no.3
    • /
    • pp.163-166
    • /
    • 1988
  • Water turnover and consumption of steers fed either fresh cut grass or hay and water turnover of steers grazed in summer or in fall were determined using 18 Holstein steers weighing 226 to 382 kg. Steers consumed 7.0 or 7.5 kg of dry-matter from hay or fresh cut grass. Animals fed hay drank significantly more water than those given fresh cut grass (P<0.01). Total water consumption, however, was greater in steers fed fresh cut grass than those given hay (P<0.05). Water turnover was about the same as total water consumption with a tendency for slightly higher values in water turnover irrespective of feeding regimes. Steers grazed in summer had greater water turnover than those grazed in fall. Water turnover was about the same in steers fed fresh cut grass and grazed in summer but decreased in steers on the dry ration or grazing in a cool season of the year.

Modeling Procedure to Adapt to Change of Trend of Water Demand: Application of Bayesian Parameter Estimation (물수요의 추세 변화의 적응을 위한 모델링 절차 제시:베이지안 매개변수 산정법 적용)

  • Lee, Sangeun;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.241-249
    • /
    • 2009
  • It is well known that the trend of water demand in large-size water supply systems has been suddenly changed, and many expansions of water supply facilities become unnecessary. To be cost-effective, thus, politicians as well as many professionals lay stress on the adaptive management of water supply facilities. Failure in adapting to the new trend of demand is sure to be the most critical reason of unnecessary expansions. Hence, we try to develop the model and modeling procedure that do not depend on the old data of demand, and provide engineers with the fast learning process. To forecast water demand of Seoul, the Bayesian parameter estimation was applied, which is a representative method for statistical pattern recognition. It results that we can get a useful time-series model after observing water demand during 6 years, although trend of water demand were suddenly changed.

Strengthen the Construction of Water Resources Monitoring Ability, Support the Strictest System of Water Resources management

  • Jiang, Yun-Zhong;Yi, Wan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.27-33
    • /
    • 2012
  • At present, the overall water resources monitoring ability in China is weak since there is an absence of a sound monitoring system and comprehensive monitoring information. In addition to the problem of weak management ability in monitoring, measurement and information, it can hardly meet the need of implementing the strictest management system of water resource and also restricts the practice of the system to some extent. The production states the necessity of further development of water resources monitoring ability and points out the concept of "One Country, One Account" for constructing water resources information. There is an analysis on the demand on further development of water resources monitoring ability and profound discussion about the strategies for supporting "three red-line" management.

  • PDF

Effects of Water Aggressivity on the Corrosion in Water Distribution Systems (물의 침식성이 수도관 부식에 미치는 영향)

  • Kwak, Phill Jae;Kim, Sun Il;Woo, Dal Sik;Nam, Sang Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.134-139
    • /
    • 1999
  • This study was conducted to determine the effects of water aggressivity on the corrosion in a recirculating pipe loop systems. As the pH was increased in the range of pH 6.0~8.5, water aggressivity was decreased. Zine and iron concentration of water adjusted by pH were lower than those of tap water and water adjusted by alkalinity and calcium hardness. The major elements of corrosion deposit analyzed by EDS(Energy Dispersion Spectrophotometer) were zinc and calcium. In conclusion, we suggest that in corrosion control practice in the water works industry, increasing the pH of the water can serve as a way of controlling the solubility of metal ions release from water distribution systems.

  • PDF

Yield and Seed Quality as Affected by Water Deficit at Different Reproductive Growth Stages in Soybean

  • Kim, Wook-Han;Hong, Byung-Hee;Kim, Seok-Dong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.321-329
    • /
    • 1999
  • The effect of water deficits on soybean [Glycine max (L.) Merr.] could appear on seed quality through changes of morphological plant characteristics. Two Korean genotypes, Hwangkeum (determinate growth habit) and Muhan (indeterminate growth habit), were used to examine the influences of treatment stage and method of water deficit during reproductive growth period on yield and seed quality of soybean. Water deficit at R5 or R6 stages was as damaging to seed quality as double water-deficit treatments at R2+R5 or R2+R6. However, seed from double water-deficit treatment tended to have lower oxidation-reduction potential compare to the corresponding single water-deficit treatment. In comparison with Muhan, Hwangkeum had significantly greater oxidation-reduction potential value. Seed yield per plant in both genotypes depended greatly on seed yield of branches. However, the proportion of number of branch seed to total seed umber in Hwangkeum was increased as the water deficit was applied during later reproductive stage, whereas, in Muhan the proportion was lower. Water-deficit treatments including the single and double water-deficit treatments and non-stressed treatment were able to be classified into five groups for Hwangkeum and four groups for Muhan based on the influences on yield components, number of pod, number of seed, and single seed weight, using principal component analysis. In both genotypes, R2+R5 water-deficit treatment decreased number of pod and seed, but increased single seed weight. On the contrary, R6 or R2+R6 stress increased the pod and seed number, but decreased single seed weight.

  • PDF

Seasonal Variations of Stream Water Temperature and its Affecting Factors on Mountain Areas (산지계류의 계절적 수온변동 특성 및 영향인자 분석)

  • Nam, Sooyoun;Choi, Hyung Tae;Lim, Honggeun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.308-315
    • /
    • 2019
  • The objective of this study was to investigate mountain stream water and air temperatures, area, latitude, altitude, and forest coverage in headwater catchments located in Kangwon-do, Mid-eastern Korea from 2015 to 2017. Daily mean value of mountain stream water temperature was approximately $6^{\circ}C$ lower than the daily mean value of air temperature on the monitoring sites during the observation period. Monthly mean value of mountain stream water temperature increased with increasing monthly mean value of air temperature from May to August during the observation period. Seasonal variations of mountain stream water temperature were dependent on air temperature rising and falling periods. Correlation analysis was conducted on mountain stream water temperature to investigate its relationship with air temperature, area, latitude, altitude, and forest coverage of air temperature rising and falling periods. The correlation analysis showed that there exists a relationship (Correlation coefficient: -0.581 ~ 0.825; p<0.05), particularly the air temperature showed highest correlation with mountain stream water temperature. Regression equations could be developed due to contribution of air temperature to affect mountain stream water temperature (Correlation coefficient: 0.742 and 0.825; p<0.01). Therefore, a method using various parameters based on air temperature rising and falling periods, could be recommended for predicting mountain stream water temperature.

A Statistical Assessment of Increasing Tidal Mixing Effects on Water Quality in the Shiwha Coastal Reservoir (시화호 해수유통량 증대에 따른 통계학적 수질 영향 분석)

  • Lee, Bum-Yeon;Lee, Chang-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.425-432
    • /
    • 2021
  • A tidal power plant (TPP) has been in operation since the end of 2011 to improve the water quality of Shihwa Coastal Reservoir (SCR). Tidal mixing rate increased 5.6 times after the TPP operation so that in this study, its effects on water quality was assessed through statistical analysis of long-term water quality monitoring data. It was found that the increased tidal mixing contributed to solving the hypoxia problem in the bottom water by preventing the summer stratification. The analysis also showed that the increased tidal mixing had different effects depending on the relative concentration difference for each water quality substances between the SCR and the outside of SCR. The average concentrations of some substances (chemical oxygen demand, total phosphorus, chlorophyll-a) with higher concentrations than the outside of SCR decreased due to the dilution effect, but the other substances (total nitrogen, dissolved inorganic nitrogen, dissolved inorganic phosphorus) with lower concentrations compared to the outside ones increased on the contrary. Factor analysis also showed a consistent result that the first factor accounting for the water quality was changed from the organic-related substances to the nutrient-related substances after the increased tidal mixing. These results imply that the focus of future water quality management needs shifting from the organic substances to the nutrients, particularly dissolved inorganic nutrients. Considering the effect of inflow seawater on the nutrients, the management area should be extended to cover not only SCR but also a certain area outside of SCR.