Acknowledgement
This work was supported by the Research Program funded Korea National Institute of Health (Fund CODE 2016ER670100, 2016ER670101, 2016ER670102, 2018ER67100, 2018ER67101, 2018ER67102, 2021ER120500, 2021ER120501, 2021ER120502, 2024ER120100, and 2024ER120101).
References
- Global Initiative for Chronic Obstructive Lung Disease. 2022 GOLD reports: 2022 global strategy for prevention, diagnosis and management of COPD [Internet]. Deer Park: GOLD; 2022 [cited 2025 Feb 24]. https://goldcopd.org/2022-gold-reports.
- Chai CS, Liam CK, Pang YK, Ng DL, Tan SB, Wong TS, et al. Clinical phenotypes of COPD and health-related quality of life: a cross-sectional study. Int J Chron Obstruct Pulmon Dis 2019;14:565-73. https://doi.org/10.2147/COPD.S196109
- Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, et al. Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med 2010;182:598-604. https://doi.org/10.1164/rccm.200912-1843CC
- Johannessen A, Skorge TD, Bottai M, Grydeland TB, Nilsen RM, Coxson H, et al. Mortality by level of emphysema and airway wall thickness. Am J Respir Crit Care Med 2013;187:602-8. https://doi.org/10.1164/rccm.201209-1722OC
- Lin CW, Huang HY, Chung FT, Lo CY, Huang YC, Wang TW, et al. Emphysema-predominant COPD had a greater 5-year mortality and a worse annual decline in lung function than airway obstruction-predominant COPD or asthma at initial same degree of airflow obstruction. Medicina (Kaunas) 2021;57:1261. https://doi.org/10.3390/medicina57111261
- Gevenois PA, De Vuyst P, de Maertelaer V, Zanen J, Jacobovitz D, Cosio MG, et al. Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 1996;154:187-92. https://doi.org/10.1164/ajrccm.154.1.8680679
- Ostridge K, Wilkinson TM. Present and future utility of computed tomography scanning in the assessment and management of COPD. Eur Respir J 2016;48:216-28. https://doi.org/10.1183/13993003.00041-2016
- Lee YK, Oh YM, Lee JH, Kim EK, Lee JH, Kim N, et al. Quantitative assessment of emphysema, air trapping, and airway thickening on computed tomography. Lung 2008;186:157-65. https://doi.org/10.1007/s00408-008-9071-0
- Han MK, Kazerooni EA, Lynch DA, Liu LX, Murray S, Curtis JL, et al. Chronic obstructive pulmonary disease exacerbations in the COPDGene study: associated radiologic phenotypes. Radiology 2011;261:274-82. https://doi.org/10.1148/radiol.11110173
- Jairam PM, van der Graaf Y, Lammers JW, Mali WP, de Jong PA; PROVIDI Study group. Incidental findings on chest CT imaging are associated with increased COPD exacerbations and mortality. Thorax 2015;70:725-31. https://doi.org/10.1136/thoraxjnl-2014-206160
- Lee JY, Chon GR, Rhee CK, Kim DK, Yoon HK, Lee JH, et al. Characteristics of patients with chronic obstructive pulmonary disease at the first visit to a pulmonary medical center in Korea: the Korea COPD Subgroup Study team cohort. J Korean Med Sci 2016;31:553-60. https://doi.org/10.3346/jkms.2016.31.4.553
- Park HJ, Byun MK, Kim HJ, Ahn CM, Lee JH, Shin KC, et al. Asthma-COPD overlap shows favorable clinical outcomes compared to pure COPD in a Korean COPD cohort. Allergy Asthma Immunol Res 2017;9:431-7. https://doi.org/10.4168/aair.2017.9.5.431
- Jo YS, Hwang YI, Yoo KH, Kim TH, Lee MG, Lee SH, et al. Effect of inhaled corticosteroids on exacerbation of asthma-COPD overlap according to different diagnostic criteria. J Allergy Clin Immunol Pract 2020;8:1625-33. https://doi.org/10.1016/j.jaip.2020.01.004
- Kim Y, Kim SH, Rhee CK, Lee JS, Lee CY, Kim DK, et al. Air trapping and the risk of COPD exacerbation: analysis from prospective KOCOSS cohort. Front Med (Lausanne) 2022;9:835069. https://doi.org/10.3389/fmed.2022.835069
- Joo H, Park SY, Park SY, Park SY, Kim SH, Cho YS, et al. Phenotype of asthma-COPD overlap in COPD and severe asthma cohorts. J Korean Med Sci 2022;37:e236. https://doi.org/10.3346/jkms.2022.37.e236
- Choi JY, Yoon HK, Lee SY, Kim JW, Choi HS, Kim YI, et al. Comparison of clinical characteristics between chronic bronchitis and non-chronic bronchitis in patients with chronic obstructive pulmonary disease. BMC Pulm Med 2022;22:69. https://doi.org/10.1186/s12890-022-01854-x
- Shin SH, Kwon SO, Kim V, Silverman EK, Kim TH, Kim DK, et al. Association of body mass index and COPD exacerbation among patients with chronic bronchitis. Respir Res 2022;23:52. https://doi.org/10.1186/s12931-022-01957-3
- Choi H, Kim H, Jin KN, Jeong YJ, Chae KJ, Lee KH, et al. A challenge for emphysema quantification using a deep learning algorithm with low-dose chest computed tomography. J Thorac Imaging 2022;37:253-61. https://doi.org/10.1097/RTI.0000000000000647
- Park H, Hwang EJ, Goo JM. Deep learning-based kernel adaptation enhances quantification of emphysema on low-dose chest CT for predicting long-term mortality. Invest Radiol 2024;59:278-86. https://doi.org/10.1097/RLI.0000000000001003
- Lee SM, Lee JG, Lee G, Choe J, Do KH, Kim N, et al. CT image conversion among different reconstruction kernels without a sinogram by using a convolutional neural network. Korean J Radiol 2019;20:295-303. https://doi.org/10.3348/kjr.2018.0249
- Soliman MA, Kelahan LC, Magnetta M, Savas H, Agrawal R, Avery RJ, et al. A framework for harmonization of radiomics data for multicenter studies and clinical trials. JCO Clin Cancer Inform 2022;6:e2200023. https://doi.org/10.1200/CCI.22.00023
- Kim H, Park CM, Lee M, Park SJ, Song YS, Lee JH, et al. Impact of reconstruction algorithms on CT radiomic features of pulmonary tumors: analysis of intra- and inter-reader variability and inter-reconstruction algorithm variability. PLoS One 2016;11:e0164924. https://doi.org/10.1371/journal.pone.0164924
- Eldevik K, Nordhoy W, Skretting A. Relationship between sharpness and noise in CT images reconstructed with different kernels. Radiat Prot Dosimetry 2010;139:430-3. https://doi.org/10.1093/rpd/ncq063
- Choe J, Lee SM, Do KH, Lee G, Lee JG, Lee SM, et al. Deep learning-based image conversion of CT reconstruction kernels improves radiomics reproducibility for pulmonary nodules or masses. Radiology 2019;292:365-73. https://doi.org/10.1148/radiol.2019181960
- Bakker JT, Klooster K, Wisselink HJ, Pelgrim GJ, Vliegenthart R, Slebos DJ. Effect of chest computed tomography kernel use on emphysema score in severe chronic obstructive pulmonary disease patients evaluated for lung volume reduction. Respiration 2023;102:164-72. https://doi.org/10.1159/000528628
- Lynch DA, Austin JH, Hogg JC, Grenier PA, Kauczor HU, Bankier AA, et al. CT-definable subtypes of chronic obstructive pulmonary disease: a statement of the Fleischner Society. Radiology 2015;277:192-205. https://doi.org/10.1148/radiol.2015141579
- Gierada DS, Bierhals AJ, Choong CK, Bartel ST, Ritter JH, Das NA, et al. Effects of CT section thickness and reconstruction kernel on emphysema quantification relationship to the magnitude of the CT emphysema index. Acad Radiol 2010;17:146-56.
- Bak SH, Kim JH, Jin H, Kwon SO, Kim B, Cha YK, et al. Emphysema quantification using low-dose computed tomography with deep learning-based kernel conversion comparison. Eur Radiol 2020;30:6779-87. https://doi.org/10.1007/s00330-020-07020-3