DOI QR코드

DOI QR Code

Comparison of Anticancer Effects of Histone Deacetylase Inhibitors CG-745 and Suberoylanilide Hydroxamic Acid in Non-small Cell Lung Cancer

  • Hyo Jin Kim (Division of Pulmonary Medicine, Department of Internal Medicine, Wonkwang University School of Medicine) ;
  • Ui Ri An (Division of Pulmonary Medicine, Department of Internal Medicine, Wonkwang University School of Medicine) ;
  • Han Jee Yoon (Division of Pulmonary Medicine, Department of Internal Medicine, Wonkwang University School of Medicine) ;
  • Hyun Lim (Division of Pulmonary Medicine, Department of Internal Medicine, Wonkwang University School of Medicine) ;
  • Ki Eun Hwang (Division of Pulmonary Medicine, Department of Internal Medicine, Wonkwang University School of Medicine) ;
  • Young Suk Kim (Division of Pulmonary Medicine, Department of Internal Medicine, Wonkwang University School of Medicine) ;
  • Hak Ryul Kim (Division of Pulmonary Medicine, Department of Internal Medicine, Wonkwang University School of Medicine)
  • Received : 2024.07.08
  • Accepted : 2025.02.10
  • Published : 2025.04.30

Abstract

Background: Histone deacetylase (HDAC) inhibition offers potential anticancer effects across diverse cancers due to HDAC's significant role in cancer development and progression. Consequently, we demonstrated the therapeutic efficacy of the novel HDAC inhibitor, CG-745, in comparison with existing inhibitors such as suberoylanilide hydroxamic acid (SAHA) in non-small cell lung cancer (NSCLC) cells. Methods: CG-745's effect on apoptosis and reactive oxygen species (ROS)-dependent mitochondrial dysfunction was investigated using annexin V assay, MitoSoX, and Western blot in human A549 and H460 cells. Additionally, HDAC expression was analyzed through real-time polymerase chain reaction. We also evaluated the inhibitory effect of CG-745 on epithelial-mesenchymal transition (EMT) induced by transforming growth factor β1 (TGF-β1) via Western blot, scratch analysis, and matrigel invasion analysis. Results: Compared to SAHA, CG-745 inhibited cell viability and mRNA expression of HDACs such as HDAC1, HDAC2, HDAC3, and HDAC8. It also induced apoptosis, ROS, and mitochondrial dysfunction in a concentration-dependent manner. CG-745 reversed EMT triggered by TGF-β1 in A549 and H460 cells, and curtailed the migration and invasion enhanced by TGF-β1. CG-745 has demonstrably inhibited EMT and induced apoptosis in NSCLC cells. Conclusion: CG-745 may represent a novel therapeutic strategy for NSCLC treatment.

Keywords

Acknowledgement

This study was supported by a grant from Wonkwang University in 2023.

References

  1. Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkuhler C. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res 2007;17:195-211. https://doi.org/10.1038/sj.cr.7310149
  2. Chun P. Histone deacetylase inhibitors in hematological malignancies and solid tumors. Arch Pharm Res 2015;38: 933-49. https://doi.org/10.1007/s12272-015-0571-1
  3. Stahl M, Kohrman N, Gore SD, Kim TK, Zeidan AM, Prebet T. Epigenetics in cancer: a hematological perspective. PLoS Genet 2016;12:e1006193. https://doi.org/10.1371/journal.pgen.1006193
  4. Kim YD, Park SM, Ha HC, Lee AR, Won H, Cha H, et al. HDAC inhibitor, CG-745, enhances the anti-cancer effect of anti-PD-1 immune checkpoint inhibitor by modulation of the immune microenvironment. J Cancer 2020;11: 4059-72. https://doi.org/10.7150/jca.44622
  5. Kim YS, Cha H, Kim HJ, Cho JM, Kim HR. The anti-fibrotic effects of CG-745, an HDAC inhibitor, in bleomycin and PHMG-induced mouse models. Molecules 2019;24: 2792. https://doi.org/10.3390/molecules24152792
  6. Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 1998;20: 615-26. https://doi.org/10.1002/(SICI)1521-1878(199808)20:8<615::AID-BIES4>3.0.CO;2-H
  7. Weichert W, Denkert C, Noske A, Darb-Esfahani S, Dietel M, Kalloger SE, et al. Expression of class I histone deacetylases indicates poor prognosis in endometrioid subtypes of ovarian and endometrial carcinomas. Neoplasia 2008;10:1021-7. https://doi.org/10.1593/neo.08474
  8. Sudo T, Mimori K, Nishida N, Kogo R, Iwaya T, Tanaka F, et al. Histone deacetylase 1 expression in gastric cancer. Oncol Rep 2011;26:777-82.
  9. Li Y, Seto E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb Perspect Med 2016;6:a026831. https://doi.org/10.1101/cshperspect.a026831
  10. Miyanaga A, Gemma A, Noro R, Kataoka K, Matsuda K, Nara M, et al. Antitumor activity of histone deacetylase inhibitors in non-small cell lung cancer cells: development of a molecular predictive model. Mol Cancer Ther 2008;7:1923-30. https://doi.org/10.1158/1535-7163.MCT-07-2140
  11. Li CT, Hsiao YM, Wu TC, Lin YW, Yeh KT, Ko JL. Vorinostat, SAHA, represses telomerase activity via epigenetic regulation of telomerase reverse transcriptase in non-small cell lung cancer cells. J Cell Biochem 2011;112:3044-53. https://doi.org/10.1002/jcb.23229
  12. Jung DE, Park SB, Kim K, Kim C, Song SY. CG200745, an HDAC inhibitor, induces anti-tumour effects in cholangiocarcinoma cell lines via miRNAs targeting the Hippo pathway. Sci Rep 2017;7:10921. https://doi.org/10.1038/s41598-017-11094-3
  13. Lee HS, Park SB, Kim SA, Kwon SK, Cha H, Lee DY, et al. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance. Sci Rep 2017;7:41615. https://doi.org/10.1038/srep41615
  14. Oh ET, Park MT, Choi BH, Ro S, Choi EK, Jeong SY, et al. Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells. Invest New Drugs 2012;30:435-42. https://doi.org/10.1007/s10637-010-9568-2
  15. Yoon GE, Jung JK, Lee YH, Jang BC, Kim JI. Histone deacetylase inhibitor CG200745 ameliorates high-fat diet-induced hypertension via inhibition of angiotensin II production. Naunyn Schmiedebergs Arch Pharmacol 2020;393:491-500. https://doi.org/10.1007/s00210-019-01749-5
  16. Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis 2000;21:485-95. https://doi.org/10.1093/carcin/21.3.485
  17. Burdon RH. Control of cell proliferation by reactive oxygen species. Biochem Soc Trans 1996;24:1028-32. https://doi.org/10.1042/bst0241028
  18. Ozben T. Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 2007;96:2181-96. https://doi.org/10.1002/jps.20874
  19. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006;5:219-34. https://doi.org/10.1038/nrd1984
  20. Steeg PS. Targeting metastasis. Nat Rev Cancer 2016;16: 201-18. https://doi.org/10.1038/nrc.2016.25
  21. Chen S, Zhao Y, Gou WF, Zhao S, Takano Y, Zheng HC. The anti-tumor effects and molecular mechanisms of suberoylanilide hydroxamic acid (SAHA) on the aggressive phenotypes of ovarian carcinoma cells. PLoS One 2013;8:e79781. https://doi.org/10.1371/journal.pone.0079781
  22. Chun SM, Lee JY, Choi J, Lee JH, Hwang JJ, Kim CS, et al. Epigenetic modulation with HDAC inhibitor CG200745 induces anti-proliferation in non-small cell lung cancer cells. PLoS One 2015;10:e0119379. https://doi.org/10.1371/journal.pone.0119379
  23. Sonnemann J, Marx C, Becker S, Wittig S, Palani CD, Kramer OH, et al. p53-dependent and p53-independent anticancer effects of different histone deacetylase inhibitors. Br J Cancer 2014;110:656-67. https://doi.org/10.1038/bjc.2013.742
  24. Song J, Shi W. The concomitant apoptosis and EMT underlie the fundamental functions of TGF-β. Acta Biochim Biophys Sin (Shanghai) 2018;50:91-7. https://doi.org/10.1093/abbs/gmx117
  25. Peixoto P, Etcheverry A, Aubry M, Missey A, Lachat C, Perrard J, et al. EMT is associated with an epigenetic signature of ECM remodeling genes. Cell Death Dis 2019; 10:205. https://doi.org/10.1038/s41419-019-1397-4
  26. Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res 2005;65:5991-5. https://doi.org/10.1158/0008-5472.CAN-05-0616
  27. Xiao D, He J. Epithelial mesenchymal transition and lung cancer. J Thorac Dis 2010;2:154-9.
  28. Kelly WK, O'Connor OA, Krug LM, Chiao JH, Heaney M, Curley T, et al. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol 2005;23:3923-31. https://doi.org/10.1200/JCO.2005.14.167
  29. Kim KP, Park SJ, Kim JE, Hong YS, Lee JL, Bae KS, et al. First-in-human study of the toxicity, pharmacokinetics, and pharmacodynamics of CG200745, a pan-HDAC inhibitor, in patients with refractory solid malignancies. Invest New Drugs 2015;33:1048-57. https://doi.org/10.1007/s10637-015-0262-2