DOI QR코드

DOI QR Code

Comparison of Residual Stress According to Measurement Methods for Shot-Peened Stainless Steels

  • Seok-Hwan Ahn (Department of Unmanned Aero Mechanical Engineering, Jungwon University)
  • Received : 2024.12.12
  • Accepted : 2025.01.08
  • Published : 2025.02.28

Abstract

Residual stress in materials influences the structural and dimensional stability of mechanical components and can lead to damage. In this study, shot peening was performed on stainless steel, a material widely used in ship components and piping, to evaluate the changes in residual stress induced by this process. Residual stress measurements were conducted after shot peening three types of stainless steel-STS303, STS316L, and STS410-using the hole drilling method (HDM), X-ray diffraction (XRD) method, and instrumented indentation technique (IIT). The results indicated that residual stress distributions obtained through the hole drilling method exhibited similar trends across all three materials. XRD measurements showed that STS303 and STS410 had comparable residual stress distribution patterns, whereas STS316L exhibited a more dispersed distribution. Similarly, the residual stress distributions measured using IIT showed a consistent trend for STS303 and STS316L, while STS410 demonstrated a more scattered distribution. Although the residual stress distributions obtained from the three measurement methods exhibited similar overall trends, slight variations were observed in residual stress values depending on the method used. Therefore, further analysis is required to compare measurement errors across different methods, using various materials, to enhance the accuracy and reliability of residual stress evaluations.

Keywords

Acknowledgement

The author acknowledges the technical support provided by MYM Company, Republic of Korea.

References

  1. ASTM Standards. (2013). Standard test method for determining residual stresses by the hole-drilling strain-gage method (ASTM E837-13). American Society for Testing and Materials. https://www.astm.org/e0837-13.html
  2. ASTM Standards. (2020) Standard test methods for performance characteristics of metallic bonded resistance strain gages (ASTM E251-20a). American Society for Testing and Materials. https://www.astm.org/e0251-20a.html
  3. ASTM Standards. (2021). Standard test method for verifying the alignment of X-Ray diffraction instrumentation for residual stress measurement (ASTM-E915-21). American Society for Testing and Materials. https://www.astm.org/e0915-21.html
  4. Azevado, C. R. F., & Neto, J. B. (2004). Failure analysis of forged and induction hardened steel cold work rolls. Engineering Failure Analysis, 11(6), 951–966. https://doi.org/10.1016/j.engfailanal.2003.11.005
  5. Boeing Company. (2018). Standard overhaul practices manual 20-10-03 (Revision No. 46).
  6. Çakir, F. H., Öteyaka, M. Ö., Er, Ü., & Bozkurt, F. (2021). Enhancing wear resistance of AISI 304 alloy with shot peening and investigation of corrosion behaviour in marine water. Transactions of the IMF, 99(4), 194–202. https://doi.org/10.1080/00202967.2021.1906542
  7. Chandler, K. A. (1985). Marine and offshore corrosion - A volume in marine engineering series. Elsevier. https://doi.org/10.1016/C2013-0-06267-6
  8. Dive, V., & Lakade, S. (2021). Recent research progress on residual stress measurement using non-destructive testing. Materials Today: Proceedings, 47(Part 11), 3282–3287. https://doi.org/10.1016/j.matpr.2021.07.094
  9. European Standard. (2009). Non-destructive testing - Test method for residual stress analysis by X-ray diffraction (SIST EN 15305:2009).
  10. Gautam, N., Kumar, A., & Mondi, P. R. (2021). Evaluation methods for residual stress measurement in large components. Materials Today: Proceedings, 44(Part 6), 4239–4244. https://doi.org/10.1016/j.matpr.2020.10.539
  11. Guo, J., Fu, H., Pan, B., & Kang, R. (2021). Recent progress of residual stress measurement methods: A Review. Chinese Journal of Aeronautics, 34(2), 54–78. https://doi.org/10.1016/j.cja.2019.10.010
  12. Hauk, V. (1997). Structural and residual stress analysis by nondestructive methods: Evaluation-Application-Assessment. Elsevier Science.
  13. International Standard. (2017). Non-destructive testing - Industrial computed radiography with storage phosphor imaging plates - Part 2: General principles for testing of metallic materials using X-rays and gamma rays (ISO 16371-2). Japanese Society for Non-Destructive Inspection.
  14. Kandil, F. A., Lord, J. D., Fry, A. T., & Grant, P. V. (2001). A review of residual stress measurement methods – a guide to technique selection (NPL Report MATC(A)04). http://eprintspublications.npl.co.uk/id/eprint/1873
  15. Kim, J. C., Cho, H. S., & Cheong, S. K. (2013). Fatigue characteristics and compressive residual stress of shot peened alloy 600 under high temperature. Transactions of the Korean Society of Mechanical Engineers - A, 37(3), 333–338. https://doi.org/10.3795/KSME-A.2013.37.3.333
  16. Kim, J. H., Oh, Y. T., Park, H. B., Lee, D. H., Kim, H. J., Kin, U. J., & Shim. D. S. (2020). Surface quality and corrosion of additively manufactured STS316L treated by ultrasonic nanocrystal surface modification. Journal of thr Korean Society of Manufacturing Process Engineers, 19(8), 94–103. https://doi.org/10.14775/ksmpe.2020.19.08.094
  17. Kim, T. G., & Ahn, S. H. (2022). Comparison of residual stress of shot peened stainless steels. Proceedings of 2022 Spring Conference of the Korean Association of Ocean Science and Technology Societies(KAOSTS).
  18. Kobayashi, M., Matsui, T., & Murakami, Y. (1998). Mechanism of creation of compressive residual stress by shot peening. International Journal of Fatigue, 20(5), 351–357. https://doi.org/10.1016/S0142-1123(98)00002-4
  19. Korea Standard. (2018). Instrumented indentation tests on welds in steel — Measurement of residual stress on welded joints.
  20. Lee, J. S., Jang, J. I., Lee, B. W., Choi, Y., Lee, S. G., & Kwon, D. I. (2006). An instrumented indentation technique for estimating fracture toughness of ductile materials: A critical indentation energy model based on continuum damage mechanics. Acta Materialia, 54(4), 1101–1109. https://doi.org/10.1016/j.actamat.2005.10.033
  21. Lee, W. G., Gu, K. H., Kim, C. S., & Nam, K. W. (2021). Reliability improvement of offshore structural steel F690 using surface crack nondamaging technology. Journal of Ocean Engineering and Tehcnology, 35(5), 327–335. https://doi.org/10.26748/KSOE.2021.022
  22. Leguinagoicoa, N., Albizuri, J., & Larrañaga, A. (2022). Fatigue improvement and residual stress relaxation of shot-peened alloy steel DIN 34CrNiMo6 under axial loading. International Journal of Fatigue, 162, 107006. https://doi.org/10.1016/j.ijfatigue.2022.107006
  23. Lei, Y., O'Dowd, N. P., & Webster, G. A. (2000). Fracture mechanics analysis of a crack in a residual stress field. International Journal of Fracture, 106, 195–216. https://doi.org/10.1023/A:1026574400858
  24. Nam, K. W., Paeng, J. E., Gu, K. H., & Son, D. J. (2021). A peculiar fatigue characteristics evaluation of laser-peened STS304. Journal of Power System Engineering, 25(3), 38–45. https://doi.org/10.9726/kspse.2021.25.3.038
  25. Ray, A. K., Mishra, K. K., Das, G., & Chaudhary, P. N. (2000). Life of rolls in a cold rolling mill in a steel plant-operation versus manufacture. Engineering Failure Analysis, 7(1), 55–67. https://doi.org/10.1016/S1350-6307(99)00004-7
  26. Rossini, N. S., Dassisti, M., Benyounis, K. Y., & Olabi, A. G. (2012). Methods of measuring residual stresses in components. Materials & Design, 35, 572–588. https://doi.org/10.1016/j.matdes.2011.08.022
  27. Ruud, C. O. (1982). A review of selected non-destructive methods for residual stress measurement. NDT International, 15(1), 15–23. https://doi.org/10.1016/0308-9126(82)90083-9
  28. SAE Standards. (2003). Residual stress measurement by X-ray diffraction (HS-784/2003) (2003 ed.). SAE International.
  29. SAE Standards. (2018). Aerospace Material Specification. Shot peening (AMS 2430U). SAE International.
  30. Schajer, G. S. (2013). Practical Residual Stress Measurement Methods. John Wiley & Sons, Ltd.
  31. Suzuki, K. (2017). Proposal for a direct-method for stress measurement using an X-ray area detector. NDT & E International, 92, 104–110. https://doi.org/10.1016/j.ndteint.2017.07.012
  32. Trung, P. Q., Khun, N. W., & Butler, D. (2017). Effect of shot peening process on the fatigue life of shot peened low alloy steel. Journal of Engineering Materials and Technology, 140(1), 011013. https://doi.org/10.1115/1.4037525
  33. Voorwald, H. J. C., Silva, M. P., Costa, M. Y. P., & Cioffi, M. O. H. (2009). Improvement in the fatigue strength of chromium electroplated AISI 4340 steel by shot peening. Fatigue & Fracture of Engineering Materials & Structures, 32(2), 97–104. https://doi.org/10.1111/j.1460-2695.2008.01314.x
  34. Wang, S., Li, Y., Yao, M., & Wang, R. (1998). Compressive residual stress introduced by shot peening. Journal of Materials Processing Technology, 73(1–3), 64–73. https://doi.org/10.1016/S0924-0136(97)00213-6
  35. Wang, Z., Zhou, Z., Xu, W., Yang, D., Xu, Y., Yang, L., Ren, J., Li, Y., & Huang, Y. (2021). Research status and development trends in the field of marine environment corrosion: a new perspective. Environmental Science and Pollution Research, 28, 54403–54428. https://doi.org/10.1007/s11356-021-15974-0
  36. Wikipedia. (2024). Residual stress. https://en.wikipedia.org/wiki/Residual_stress
  37. Withers, P. J., Turski, M., Edwards, L., Bouchard, P. J., & Buttle, D. J. (2008). Recent advances in residual stress measurement. International Journal of Pressure Vessles and Piping, 85(3), 118–127. https://doi.org/10.1016/j.ijpvp.2007.10.007
  38. Youtsos, A. G. (Ed.) (2006). Residual stress and its effects on fatigue and fracture. Springer.
  39. Xu, J., Lu, H., Cai, L., Liao, Y., & Lian, J. (2023). Surface protection technology for metallic materials in marine environments. Materials, 16(20), 6822. https://doi.org/10.3390/ma16206822