Acknowledgement
The author acknowledges the technical support provided by MYM Company, Republic of Korea.
References
- ASTM Standards. (2013). Standard test method for determining residual stresses by the hole-drilling strain-gage method (ASTM E837-13). American Society for Testing and Materials. https://www.astm.org/e0837-13.html
- ASTM Standards. (2020) Standard test methods for performance characteristics of metallic bonded resistance strain gages (ASTM E251-20a). American Society for Testing and Materials. https://www.astm.org/e0251-20a.html
- ASTM Standards. (2021). Standard test method for verifying the alignment of X-Ray diffraction instrumentation for residual stress measurement (ASTM-E915-21). American Society for Testing and Materials. https://www.astm.org/e0915-21.html
- Azevado, C. R. F., & Neto, J. B. (2004). Failure analysis of forged and induction hardened steel cold work rolls. Engineering Failure Analysis, 11(6), 951–966. https://doi.org/10.1016/j.engfailanal.2003.11.005
- Boeing Company. (2018). Standard overhaul practices manual 20-10-03 (Revision No. 46).
- Çakir, F. H., Öteyaka, M. Ö., Er, Ü., & Bozkurt, F. (2021). Enhancing wear resistance of AISI 304 alloy with shot peening and investigation of corrosion behaviour in marine water. Transactions of the IMF, 99(4), 194–202. https://doi.org/10.1080/00202967.2021.1906542
- Chandler, K. A. (1985). Marine and offshore corrosion - A volume in marine engineering series. Elsevier. https://doi.org/10.1016/C2013-0-06267-6
- Dive, V., & Lakade, S. (2021). Recent research progress on residual stress measurement using non-destructive testing. Materials Today: Proceedings, 47(Part 11), 3282–3287. https://doi.org/10.1016/j.matpr.2021.07.094
- European Standard. (2009). Non-destructive testing - Test method for residual stress analysis by X-ray diffraction (SIST EN 15305:2009).
- Gautam, N., Kumar, A., & Mondi, P. R. (2021). Evaluation methods for residual stress measurement in large components. Materials Today: Proceedings, 44(Part 6), 4239–4244. https://doi.org/10.1016/j.matpr.2020.10.539
- Guo, J., Fu, H., Pan, B., & Kang, R. (2021). Recent progress of residual stress measurement methods: A Review. Chinese Journal of Aeronautics, 34(2), 54–78. https://doi.org/10.1016/j.cja.2019.10.010
- Hauk, V. (1997). Structural and residual stress analysis by nondestructive methods: Evaluation-Application-Assessment. Elsevier Science.
- International Standard. (2017). Non-destructive testing - Industrial computed radiography with storage phosphor imaging plates - Part 2: General principles for testing of metallic materials using X-rays and gamma rays (ISO 16371-2). Japanese Society for Non-Destructive Inspection.
- Kandil, F. A., Lord, J. D., Fry, A. T., & Grant, P. V. (2001). A review of residual stress measurement methods – a guide to technique selection (NPL Report MATC(A)04). http://eprintspublications.npl.co.uk/id/eprint/1873
- Kim, J. C., Cho, H. S., & Cheong, S. K. (2013). Fatigue characteristics and compressive residual stress of shot peened alloy 600 under high temperature. Transactions of the Korean Society of Mechanical Engineers - A, 37(3), 333–338. https://doi.org/10.3795/KSME-A.2013.37.3.333
- Kim, J. H., Oh, Y. T., Park, H. B., Lee, D. H., Kim, H. J., Kin, U. J., & Shim. D. S. (2020). Surface quality and corrosion of additively manufactured STS316L treated by ultrasonic nanocrystal surface modification. Journal of thr Korean Society of Manufacturing Process Engineers, 19(8), 94–103. https://doi.org/10.14775/ksmpe.2020.19.08.094
- Kim, T. G., & Ahn, S. H. (2022). Comparison of residual stress of shot peened stainless steels. Proceedings of 2022 Spring Conference of the Korean Association of Ocean Science and Technology Societies(KAOSTS).
- Kobayashi, M., Matsui, T., & Murakami, Y. (1998). Mechanism of creation of compressive residual stress by shot peening. International Journal of Fatigue, 20(5), 351–357. https://doi.org/10.1016/S0142-1123(98)00002-4
- Korea Standard. (2018). Instrumented indentation tests on welds in steel — Measurement of residual stress on welded joints.
- Lee, J. S., Jang, J. I., Lee, B. W., Choi, Y., Lee, S. G., & Kwon, D. I. (2006). An instrumented indentation technique for estimating fracture toughness of ductile materials: A critical indentation energy model based on continuum damage mechanics. Acta Materialia, 54(4), 1101–1109. https://doi.org/10.1016/j.actamat.2005.10.033
- Lee, W. G., Gu, K. H., Kim, C. S., & Nam, K. W. (2021). Reliability improvement of offshore structural steel F690 using surface crack nondamaging technology. Journal of Ocean Engineering and Tehcnology, 35(5), 327–335. https://doi.org/10.26748/KSOE.2021.022
- Leguinagoicoa, N., Albizuri, J., & Larrañaga, A. (2022). Fatigue improvement and residual stress relaxation of shot-peened alloy steel DIN 34CrNiMo6 under axial loading. International Journal of Fatigue, 162, 107006. https://doi.org/10.1016/j.ijfatigue.2022.107006
- Lei, Y., O'Dowd, N. P., & Webster, G. A. (2000). Fracture mechanics analysis of a crack in a residual stress field. International Journal of Fracture, 106, 195–216. https://doi.org/10.1023/A:1026574400858
- Nam, K. W., Paeng, J. E., Gu, K. H., & Son, D. J. (2021). A peculiar fatigue characteristics evaluation of laser-peened STS304. Journal of Power System Engineering, 25(3), 38–45. https://doi.org/10.9726/kspse.2021.25.3.038
- Ray, A. K., Mishra, K. K., Das, G., & Chaudhary, P. N. (2000). Life of rolls in a cold rolling mill in a steel plant-operation versus manufacture. Engineering Failure Analysis, 7(1), 55–67. https://doi.org/10.1016/S1350-6307(99)00004-7
- Rossini, N. S., Dassisti, M., Benyounis, K. Y., & Olabi, A. G. (2012). Methods of measuring residual stresses in components. Materials & Design, 35, 572–588. https://doi.org/10.1016/j.matdes.2011.08.022
- Ruud, C. O. (1982). A review of selected non-destructive methods for residual stress measurement. NDT International, 15(1), 15–23. https://doi.org/10.1016/0308-9126(82)90083-9
- SAE Standards. (2003). Residual stress measurement by X-ray diffraction (HS-784/2003) (2003 ed.). SAE International.
- SAE Standards. (2018). Aerospace Material Specification. Shot peening (AMS 2430U). SAE International.
- Schajer, G. S. (2013). Practical Residual Stress Measurement Methods. John Wiley & Sons, Ltd.
- Suzuki, K. (2017). Proposal for a direct-method for stress measurement using an X-ray area detector. NDT & E International, 92, 104–110. https://doi.org/10.1016/j.ndteint.2017.07.012
- Trung, P. Q., Khun, N. W., & Butler, D. (2017). Effect of shot peening process on the fatigue life of shot peened low alloy steel. Journal of Engineering Materials and Technology, 140(1), 011013. https://doi.org/10.1115/1.4037525
- Voorwald, H. J. C., Silva, M. P., Costa, M. Y. P., & Cioffi, M. O. H. (2009). Improvement in the fatigue strength of chromium electroplated AISI 4340 steel by shot peening. Fatigue & Fracture of Engineering Materials & Structures, 32(2), 97–104. https://doi.org/10.1111/j.1460-2695.2008.01314.x
- Wang, S., Li, Y., Yao, M., & Wang, R. (1998). Compressive residual stress introduced by shot peening. Journal of Materials Processing Technology, 73(1–3), 64–73. https://doi.org/10.1016/S0924-0136(97)00213-6
- Wang, Z., Zhou, Z., Xu, W., Yang, D., Xu, Y., Yang, L., Ren, J., Li, Y., & Huang, Y. (2021). Research status and development trends in the field of marine environment corrosion: a new perspective. Environmental Science and Pollution Research, 28, 54403–54428. https://doi.org/10.1007/s11356-021-15974-0
- Wikipedia. (2024). Residual stress. https://en.wikipedia.org/wiki/Residual_stress
- Withers, P. J., Turski, M., Edwards, L., Bouchard, P. J., & Buttle, D. J. (2008). Recent advances in residual stress measurement. International Journal of Pressure Vessles and Piping, 85(3), 118–127. https://doi.org/10.1016/j.ijpvp.2007.10.007
- Youtsos, A. G. (Ed.) (2006). Residual stress and its effects on fatigue and fracture. Springer.
- Xu, J., Lu, H., Cai, L., Liao, Y., & Lian, J. (2023). Surface protection technology for metallic materials in marine environments. Materials, 16(20), 6822. https://doi.org/10.3390/ma16206822