DOI QR코드

DOI QR Code

Nanoparticle-infused oils for improved lubrication and wear resistance in internal combustion engines: Exploring nanoscience applications in automotive parts

  • Dapeng Wang (Department of Automotive Engineering, Hebei Vocational University of Technology and Engineering) ;
  • Bingyin Feng (Department of Automotive Engineering, Hebei Vocational University of Technology and Engineering) ;
  • Xueming Liu (Department of Automotive Engineering, Hebei Vocational University of Technology and Engineering) ;
  • Mostafa Habibi (Universidad UTE, Facultad de Arquitectura y Urbanismo) ;
  • Tayebeh Mahmoudi (Hoonam Sanat Farnak, Engineering and Technology Company)
  • Received : 2022.12.14
  • Accepted : 2024.12.17
  • Published : 2025.01.25

Abstract

Wear from friction is a major cause of component failure in internal combustion engines, as parts frequently come into contact with each other. Engine oils are used to lubricate these parts and minimize wear. A common approach to reducing friction is to use higher-viscosity oils, which form a thicker protective film between moving components, preventing direct contact. However, while thicker oils can reduce wear, they also increase the energy required to keep the engine running, leading to higher power dissipation. In recent years, the use of nanoparticle-infused lubricants has gained attention for their ability to improve surface properties, enhance heat transfer, boost engine efficiency, and lower maintenance costs. This study explores the effects of adding nanoparticles to engine oils, focusing on their impact on the lubrication and wear resistance of gears and other automotive parts. The results revealed that oils with a higher concentration of nanoparticles significantly reduced the coefficient of friction and wear on stationary discs, confirming the superior lubricating performance of nanoparticle-infused oils. Furthermore, the pressure and anti-wear characteristics of these nano-oils were evaluated, showing marked improvements over conventional oils without nanoparticles.

Keywords

Acknowledgement

This work was supported by Xingtai Key Research and Development Program of China, grant number, 2020ZC017 and 2020ZC018.

References

  1. Afrand, M., Nazari Najafabadi, K., Sina, N., Safaei, M.R., Kherbeet, A.S., Wongwises, S. and Dahari, M. (2016), "Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network", Int. Commun. Heat Mass Transf., 76, 209-214. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.023.
  2. Ahmad, M., Hussain, M., Khadimallah, M.A., Ayed, H., Taj, M. and Alshoaibi, A. (2022), "The impacts of thermophoresis via Cattaneo-Christov heat flux model", Comput. Concr., 29(4), 255. https://doi.org/10.12989/cac.2022.29.4.255.
  3. Ahmad, S. and Nadeem, S. (2020), "Cattaneo–Christov-based study of SWCNT–MWCNT/EG Casson hybrid nanofluid flow past a lubricated surface with entropy generation", Appl. Nanosci., 10(12), 5449-5458. https://doi.org/10.1007/s13204-020-01367-1.
  4. Alimoradlu, K. and Zamani, A. (2022), "Hydrophobicity in nanocatalysis", Adv. Nano Res., 12(1), 49-63. http://doi.org/10.12989/ANR.2022.12.1.049.
  5. Alirezaie, A., Saedodin, S., Esfe, M.H. and Rostamian, S.H. (2017), "Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO - Engine oil hybrid nanofluids and modelling the results with artificial neural networks", J. Mol. Liq., 241, 173-181. https://doi.org/10.1016/j.molliq.2017.05.121.
  6. Alsultan Abdulmajeed, S. (2021), "Assessment of microstructure and surface effects on vibrational characteristics of public transportation", Adv. Nano Res., 11(1), 101-113. http://doi.org/10.12989/ANR.2021.11.1.101.
  7. Arjomandi, H. and Asl, A.F. (2021), "Pull-out strength between Nano-SiO2 contained light-weight self-consolidating concrete and GFRP and steel bars", Comput. Concr., 27(6), 563. https://doi.org/10.12989/cac.2021.27.6.563.
  8. Asadi, A., Asadi, M., Rezaniakolaei, A., Rosendahl, L.A. and Wongwises, S. (2018), "An experimental and theoretical investigation on heat transfer capability of Mg (OH)2/MWCNT engine oil hybrid nano-lubricant adopted as a coolant and lubricant fluid", Appl. Therm. Eng., 129, 577-586. https://doi.org/10.1016/j.applthermaleng.2017.10.074.
  9. Behdinan, K. and Moradi-Dastjerdi, R. (2022), "Thermal buckling resistance of a lightweight lead-free piezoelectric nanocomposite sandwich plate", Adv. Nano Res., 12(6), 593-603. http://doi.org/10.12989/ANR.2022.12.6.593.
  10. Bhaumik, S., Kamaraj, M. and Paleu, V. (2020), "Tribological analyses of a new optimized gearbox biodegradable lubricant blended with reduced graphene oxide nanoparticles", Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 235(5), 901-915. https://doi.org/10.1177/1350650120925590.
  11. Cai, M., Guo, R., Zhou, F. and Liu, W. (2013), "Lubricating a bright future: Lubrication contribution to energy saving and low carbon emission", Sci. China Technol. Sci., 56(12), 2888-2913. https://doi.org/10.1007/s11431-013-5403-2.
  12. Cai, T., Zandi, Y., Agdas, A.S., Selmi, A., Issakhov, A. and Roco Videla, A. (2021), "The compressive strength of concrete retrofitted with wind ash and steel slag pozzolans with a water cement based polymers", Adv. Concr. Constr., 11(6), 507-519. https://doi.org/10.12989/ACC.2021.11.6.507.
  13. Cai, J., Guo, D. and Wang, W. (2024), "Adaptive fault-tolerant control of uncertain systems with unknown actuator failures and input delay", Measure. Control, 00202940241289217. https://doi.org/10.1177/00202940241289217.
  14. Charoo, M.S., Wani, M.F., Hanief, M. and Rather, M.A. (2017), "Tribological properties of MoS2 particles as lubricant additive on EN31 alloy steel and AISI 52100 steel ball", Mater. Today, 4(9), 9967-9971. https://doi.org/10.1016/j.matpr.2017.06.303.
  15. Chen, R., Wang, S., Zhang, C., Dui, H., Zhang, Y., Zhang, Y. and Li, Y. (2024), "Component uncertainty importance measure in complex multi-state system considering epistemic uncertainties", Chinese J. Aeronaut., 37(12), 31-54. https://doi.org/10.1016/j.cja.2024.05.024.
  16. Chen, T., Crosbie Robert, C., Anandkumarb, A., Melville, C. and Chan, J. (2021), "Optimized AI controller for reinforced concrete frame structures under earthquake excitation", Adv. Concr. Constr., 11(1), 1-9. https://doi.org/10.12989/ACC.2021.11.1.001.
  17. Cheng, Q., Ali, H.E. and Albaijan, I. (2023), "Optimization of the cross-section regarding the stability of nanostructures according to the dynamic analysis", Adv. Concr. Constr., 15(4), 215-228. https://doi.org/10.12989/acc.2023.15.4.215.
  18. Cuong Bui, H. (2022), "Buckling analysis of thin-walled circular hollow section members with and without longitudinal stiffeners", Struct. Eng. Mech., 81(2), 231-242. https://doi.org/10.12989/SEM.2022.81.2.231.
  19. Dai, W., Zand, Y., Sadighi, A.A., Selmi, A., Roco-Videla, A., Wakil, K. and Issakhov, A. (2021), "The economic and management use of rhododendron petals in potas-sium-ion nano batteries anode via efficient computer simulation", Adv. Nano Res., 10(6), 517-529. http://doi.org/10.12989/ANR.2021.10.6.517.
  20. Deepthi, B., Barshilia, H.C., Rajam, K.S., Konchady, M.S., Pai, D.M. and Sankar, J. (2010), "Mechanical and tribological properties of sputter deposited nanostructured Cr–WS2 solid lubricant coatings", Surf. Coat. Tech., 205(7), 1937-1946. https://doi.org/10.1016/j.surfcoat.2010.08.074.
  21. Ding, H.X. and She, G.L. (2021), "A higher-order beam model for the snap-buckling analysis of FG pipes conveying fluid", Struct. Eng. Mech., 80(1), 63-72. https://doi.org/10.12989/SEM.2021.80.1.063.
  22. Dong, Y., Xu, B., Liao, T., Yin, C. and Tan, Z. (2023), "Application of local-feature-based 3D point cloud stitching method of low-overlap point cloud to aero-engine blade measurement", IEEE T Instrum. Measur., 72. https://doi.org/10.1109/TIM.2023.3309384.
  23. Esparham, A., Moradikhou Amir, B., Andalib Faeze, K. and Avanaki Mohammad, J. (2021), "Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete", Adv. Concr. Constr., 11(3), 219-229. https://doi.org/10.12989/ACC.2021.11.3.219.
  24. Ettefaghi, E.O.L., Ahmadi, H., Rashidi, A., Nouralishahi, A. and Mohtasebi, S.S. (2013), "Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant", Int. Commun. Heat Mass Transf., 46, 142-147. https://doi.org/10.1016/j.icheatmasstransfer.2013.05.003.
  25. Fu, L., Li, J., Yang, J., Liu, Y., He, C. and Chen, Y. (2023), "Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport", Adv. Nano Res., 15(5), 441-449. https://doi.org/10.12989/anr.2023.15.5.441.
  26. Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concr., 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
  27. Habibi, E., Zahedifar, M. and Sadeghi, E. (2024), "Sodium copper chlorophyllin conjugated with Ag plasmonic nanoparticles as efficient nanostructure for application in photodynamic therapy", J. Lumin., 273, 120708. https://doi.org/10.1016/j.jlumin.2024.120708.
  28. Han, A., Yang, Q., Chen, Y. and Li, J. (2024), "Failure-distribution-dependent H∞ fuzzy fault-tolerant control for nonlinear multilateral teleoperation system with communication delays", Electronics, 13(17). https://doi.org/10.3390/electronics13173454.
  29. Han, Q., Ding, Z., Qin, Z., Wang, T., Xu, X. and Chu, F. (2020), "A triboelectric rolling ball bearing with self-powering and self-sensing capabilities", Nano Energy, 67, 104277. https://doi.org/10.1016/j.nanoen.2019.104277.
  30. Harrat, Z.R., Amziane, S., Krour, B. and Bouiadjra, M.B. (2021), "On the static behavior of nano Si02 based concrete beams resting on an elastic foundation", Comput. Concr., 27(6), 575. https://doi.org/10.12989/cac.2021.27.6.575.
  31. Hatami, M., Hasanpour, M. and Jing, D. (2020), "Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part II: Nano lubricants", J. Mol. Liq., 319, 114156. https://doi.org/10.1016/j.molliq.2020.114156.
  32. Hemmat Esfe, M., Abbasian Arani, A.A. and Esfandeh, S. (2018a), "Improving engine oil lubrication in light-duty vehicles by using of dispersing MWCNT and ZnO nanoparticles in 5W50 as viscosity index improvers (VII)", Appl. Therm. Eng., 143, 493-506. https://doi.org/10.1016/j.applthermaleng.2018.07.034.
  33. Hemmat Esfe, M., Abbasian Arani, A.A., Madadi, M.R. and Alirezaie, A. (2018b), "A study on rheological characteristics of hybrid nano-lubricants containing MWCNT-TiO2 nanoparticles", J. Mol. Liq., 260, 229-236. https://doi.org/10.1016/j.molliq.2018.01.101.
  34. Hemmat Esfe, M., Afrand, M., Yan, W.M., Yarmand, H., Toghraie, D. and Dahari, M. (2016), "Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2(20–80)-SAE40 hybrid nano-lubricant", Int. Commun. Heat Mass Transf., 76, 133-138. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.015.
  35. Hemmat Esfe, M., Esfandeh, S. and Abbasian Arani, A.A. (2019), "Proposing a modified engine oil to reduce cold engine start damages and increase safety in high temperature operating conditions", Powder Technol., 355, 251-263. https://doi.org/10.1016/j.powtec.2019.07.009.
  36. Hu, N., Zhang, X., Wang, X., Wu, N. and Wang, S. (2020), "Study on tribological properties and mechanisms of different morphology WS2 as lubricant additives", Materials, 13(7), 1522. https://doi.org/10.3390/ma13071522.
  37. Jia, S., Niu, X., Jia, F. and Mahmoudi, T. (2023), "Advantages and disadvantages of renewable energy-oil-environmental pollution from the point of view of nanoscience", Adv. Concr. Constr., 16(1), 69-78. https://doi.org/10.12989/acc.2023.16.1.069.
  38. Jin, H., Zhang, B. and Duan, X. (2023), "Impact of nanocomposite material to counter injury in physical sport in the tennis racket", Adv. Nano Res., 14(5), 435-442. https://doi.org/10.12989/anr.2023.14.5.435.
  39. Kalyani, Jaiswal, V., Rastogi, R.B. and Kumar, D. (2017), "The investigation of different particle size magnesium-doped zinc oxide (Zn0.92Mg0.08O) nanoparticles on the lubrication behavior of paraffin oil", Appl. Nanosci., 7(6), 275-281. https://doi.org/10.1007/s13204-015-0471-1.
  40. Kamel, B.M., El-Kashif, E., Hoziefa, W., Shiba, M.S. and Elshalakany, A.B. (2021), "The effect of MWCNTs/GNs hybrid addition on the tribological and rheological properties of lubricating engine oil", J. Disper. Sci. Technol., 42(12), 1811-1819. https://doi.org/10.1080/01932691.2020.1789470.
  41. Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FGSWCNTs based on a nonlocal strain gradient theory", Comput. Concr., 26(1), 31-52. https://doi.org/10.12989/cac.2020.26.1.031.
  42. Lau, J.S. and Li, Z. (2023), "Human functions in innovation and sustainable marketing", Adv. Concr. Constr., 16(2), 97. https://doi.org/10.12989/acc.2023.16.2.097.
  43. Li, Y., Li, M., Kong, X., Baniasadi, A., Shaker, A.H. and Ali, H.E. (2023), "Psychological capital to foster employee creativity in nanotechnology companies: the mediating role of JS and CSR", Adv. Nano Res., 15(3), 277-283. https://doi.org/10.12989/anr.2023.15.3.277.
  44. Liu, X., Tan, J. and Long, S. (2024), "Multi-axis fatigue load spectrum editing for automotive components using generalized S-transform", Int. J. Fatigue, 188, 108503. https://doi.org/10.1016/j.ijfatigue.2024.108503.
  45. Maheswaran, J., Chellapandian, M. and Kumar, V. (2022), "Behavior of GGBS concrete with pond ash as a partial replacement for sand", Adv. Concr. Constr., 13(3), 233-242. https://doi.org/10.12989/ACC.2022.13.3.233.
  46. Mei, Q., Liu, L., Yang, W. and Tang, Y. (2024), "Combustion model development of future DI engines for carbon emission reduction", Energy Convers. Manage., 311, 118528. https://doi.org/10.1016/j.enconman.2024.118528.
  47. Moazami-Goudarzi, M. and Nemati, A. (2018), "Tribological behavior of self lubricating Cu/MoS2 composites fabricated by powder metallurgy", T. Nonferr. Metals Soc. China, 28(5), 946-956. https://doi.org/10.1016/S1003-6326(18)64729-6.
  48. Naddaf, A. and Zeinali Heris, S. (2018), "Experimental study on thermal conductivity and electrical conductivity of diesel oil based nanofluids of graphene nanoplatelets and carbon nanotubes", Int. Commun. Heat Mass Transfer, 95, 116-122. https://doi.org/10.1016/j.icheatmasstransfer.2018.05.004.
  49. Pourpasha, H., Zeinali Heris, S., Mahian, O. and Wongwises, S. (2020), "The effect of multi-wall carbon nanotubes/turbine meter oil nanofluid concentration on the thermophysical properties of lubricants", Powder Technol., 367, 133-142. https://doi.org/10.1016/j.powtec.2020.03.037.
  50. Presting, H. and König, U. (2003), "Future nanotechnology developments for automotive applications", Mater. Sci. Eng. C., 23(6), 737-741. https://doi.org/10.1016/j.msec.2003.09.120.
  51. Qi, L., Wang, Z., Sun, Y., Khorami, M., Mahmoudi, T. and Wu, H. (2024), "Modified couple stress and artificial intelligence examination of nonlinear buckling in porous variable thickness cylinder micro sport structures", Mech. Adv. Mater. Struct., 1-19. https://doi.org/10.1080/15376494.2024.2316795.
  52. Qiu, Z., Chen, R., Gan, X. and Wu, C. (2024), "Torsional damper design for diesel engine: Theory and application", Physica Scripta, 99(12), 125214. https://doi.org/10.1088/1402-4896/ad8af8.
  53. Radhika, P., Sobhan, C.B. and Chakravorti, S. (2021), "Improved tribological behavior of lubricating oil dispersed with hybrid nanoparticles of functionalized carbon spheres and graphene nano platelets", Appl. Surf. Sci., 540, 148402. https://doi.org/10.1016/j.apsusc.2020.148402.
  54. Raina, A. and Anand, A. (2017), "Tribological investigation of diamond nanoparticles for steel/steel contacts in boundary lubrication regime", Appl. Nanosci., 7(7), 371-388. https://doi.org/10.1007/s13204-017-0590-y.
  55. Raj, A., Sathyan, D. and Mini, K.M. (2021), "Performance evaluation of natural fiber reinforced high volume fly ash foam concrete cladding", Adv. Concr. Constr., 11(2), 151-161. https://doi.org/10.12989/ACC.2021.11.2.151.
  56. Rajabi, J. and Mohammadimehr, M. (2021), "Forced vibration analysis of a micro sandwich plate with an isotropic/orthotropic cores and polymeric nanocomposite face sheets", Comput. Concr., 28(3), 259. https://doi.org/10.12989/cac.2021.28.3.259.
  57. Rauf, A., Faisal and Mushtaq, T. (2022), "Cattaneo–Christov-based study of AL2O3–Cu/EG Casson hybrid nanofluid flow past a lubricated surface with cross diffusion and thermal radiation", Appl. Nanosci., 12(7), 2059-2076. https://doi.org/10.1007/s13204-022-02495-6.
  58. Rong, Y., Xu, Z., Liu, J., Liu, H., Ding, J., Liu, X., Luo, W., Zhang, C. and Gao, J. (2022), "Du-bus: a realtime bus waiting time estimation system based on multi-source data", IEEE T Intell. Transp. Syst., 23(12), 24524-24539. https://doi.org/10.1109/TITS.2022.3210170.
  59. Rosenkranz, A., Grützmacher, P.G., Murzyn, K., Mathieu, C. and Mücklich, F. (2021), "Multi-scale surface patterning to tune friction under mixed lubricated conditions", Appl. Nanosci., 11(3), 751-762. https://doi.org/10.1007/s13204-019-01055-9.
  60. Ruiz, V., Yate, L., Langer, J., Kosta, I., Grande, H.J. and Tena Zaera, R. (2019), "PEGylated carbon black as lubricant nanoadditive with enhanced dispersion stability and tribological performance", Tribol. Int., 137, 228-235. https://doi.org/10.1016/j.triboint.2019.05.001.
  61. Shahram Ghaedi Faramoushjan Hossein Jalalifar, R.K. (2021), "Mathematical modelling and numerical study for buckling study in concrete beams containing carbon nanotubes", Adv. Concr. Constr., 11(6), 521-529. https://doi.org/10.12989/ACC.2021.11.6.521.
  62. Shariq, M., Pal, S., Chaubey, R. and Masood, A. (2022), "An experimental and analytical study into the strength of hooked end steel fiber reinforced HVFA concrete", Adv. Concr. Constr., 13(1), 35-43. https://doi.org/10.12989/ACC.2022.13.1.035.
  63. Soltanieh, G., Yam Michael, C.H., Zhang, J.Z. and Ke, K. (2022), "Closed-form solution for the buckling behavior of the delaminated FRP plates with a rectangular hole using superelastic SMA stitches", Struct. Eng. Mech., 81(1), 39-50. https://doi.org/10.12989/SEM.2022.81.1.039.
  64. Sonebi, M., Abdalqader, A., Fayyad, T., Amaziane, S. and El Khatib, J. (2022), "Effect of fly ash and metakaolin on the properties of fiber-reinforced cementitious composites: A factorial design approach", Comput. Concr., 29(5), 347-360. https://doi.org/10.12989/cac.2022.29.5.347.
  65. Spalvins, T. (1984), "Frictional and morphological properties of Au MoS2 films sputtered from a compact target", Thin Solid Films, 118(3), 375-384. https://doi.org/10.1016/0040-6090(84)90207-4.
  66. Sun, J., Wang, L., Li, J., Li, F. and Fang, Y. (2024), "An on-line imaging sensor based on magnetic deposition and flowing dispersion for wear debris feature monitoring", Mech. Syst. Signal Proc., 212, 111321. https://doi.org/10.1016/j.ymssp.2024.111321.
  67. Thakur, P., Chahar, D. and Thakur, A. (2022), "Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites", Adv. Nano Res., 12(4), 415-426. http://doi.org/10.12989/ANR.2022.12.4.415.
  68. Wang, C., Habibi, M. and Mahmoudi, T. (2024), "Stability analysis of the nonuniform functionally graded cylindrical small-scale beam structures: Application in sport structures", Steel Compos. Struct., 52(1), 15-29. https://doi.org/10.12989/scs.2024.52.1.015.
  69. Wang, C., Liu, J., Han, J., Zhang, Z. and Jiang, M. (2023a), "Analysis of bidirectional magnetic field modulation on concentrated winding spoke-type PM machines", IEEE T. Transp. Electrificat., 10(3). https://doi.org/10.1109/TTE.2023.3348235.
  70. Wang, G., Peng, K., Zhou, H., Liu, G., Lou, Z. and Pan, F. (2023b), "Nanocomposite reinforced structures to deal with injury in physical sports", Adv. Nano Res., 14(6), 541-555. https://doi.org/10.12989/anr.2023.14.6.541.
  71. Wang, L., Gong, P., Li, W., Luo, T. and Cao, B. (2020), "Monodispersed Ag/Graphene nanocomposite as lubricant additive to reduce friction and wear", Tribol. Int., 146, 106228. https://doi.org/10.1016/j.triboint.2020.106228.
  72. Wang, P., Gao, Z., Pan, F., Moradi, Z., Mahmoudi, T. and Khadimallah, M.A. (2022), "A couple of GDQM and iteration techniques for the linear and nonlinear buckling of bidirectional functionally graded nanotubes based on the nonlocal strain gradient theory and high-order beam theory", Eng. Anal. Bound. Elem., 143, 124-136. https://doi.org/10.1016/j.enganabound.2022.06.007.
  73. Wei, F., Niu, B., Zong, G. and Zhao, X. (2025), "Adaptive neural self-triggered bipartite consensus control for nonlinear fractional-order multi-agent systems with actuator fault", Nonlinear Dyn., 113(1), 729-749. https://doi.org/10.1007/s11071-024-10234-5.
  74. Wei, F., Xu, N., Huang, S. and Cao, Y. (2024), "Disturbance observer–based adaptive neural finite-time control for nonstrict feedback nonlinear systems with input delay", Transact. Inst. Measure. Controlm, 01423312241261084. https://doi.org/10.1177/01423312241261084.
  75. Wu, J., Zheng, J., Sun, G. and Chang, X. (2022), "Experimental and numerical analyses on axial cyclic behavior of H-section aluminium alloy members", Struct. Eng. Mech., 81(1), 11-28. https://doi.org/10.12989/SEM.2022.81.1.011.
  76. Wu, X., Ding, S., Wang, H., Xu, N., Zhao, X. and Wang, W. (2025), "Dual-channel event-triggered prescribed performance adaptive fuzzy time-varying formation tracking control for nonlinear multi-agent systems", Fuzzy Sets Syst., 498, 109140. https://doi.org/10.1016/j.fss.2024.109140.
  77. Xie, H., Jiang, B., He, J., Xia, X. and Pan, F. (2016), "Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts", Tribol. Int., 93, 63-70. https://doi.org/10.1016/j.triboint.2015.08.009.
  78. Xu, Y., Geng, J., Peng, Y., Liu, Z., Yu, J. and Hu, X. (2018), "Lubricating mechanism of Fe3O4@MoS2 core-shell nanocomposites as oil additives for steel/steel contact", Tribol. Int., 121, 241-251. https://doi.org/10.1016/j.triboint.2018.01.051.
  79. Yan, C., Zhang, T., Zheng, T. and Mahmoudi, T. (2024), "Stability characteristic of bi-directional FG nano cylindrical imperfect composite: Improving the performance of sports bikes using carbon nanotubes", Steel Compos. Struct., 50(4), 459-474. https://doi.org/10.12989/scs.2024.50.4.459.
  80. Yan, Z., Liu, J., Wang, C., Lu, X. and Hao, J. (2023), "Synergistic effect and long-term lubricating mechanism of WS2/oil combinations determined via oil molecule structures in vacuum", Tribol. Int., 179, 107997. https://doi.org/10.1016/j.triboint.2022.107997.
  81. Yang, L., Mao, M., Huang, J.-n. and Ji, W. (2019), "Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: An experimental study", Powder Technol., 356, 335-341. https://doi.org/10.1016/j.powtec.2019.08.031.
  82. Yu, G., Liu, H., Mao, K., Zhu, C., Wei, P. and Lu, Z. (2020), "An experimental investigation on the wear of lubricated steel against PEEK gears", J. Tribol., 142(4). https://doi.org/10.1115/1.4045627.
  83. Yue, S., Xu, N., Zhang, L. and Zhao, N. (2024), "Observer-based event-triggered adaptive fuzzy hierarchical sliding mode fault tolerant control for uncertain under-actuated nonlinear systems", Int. J. Fuzzy Syst., 1-18. https://doi.org/10.1007/s40815-024-01834-9.
  84. Zhang, C., Zhang, X., Santosh, M., Liu, D.-D., Ma, C., Zeng, J. H., Jiang, S., Luo, Q., Kong, X.Y. and Liu, L.F. (2020), "Zircon Hf-O-Li isotopes of granitoids from the Central Asian Orogenic Belt: Implications for supercontinent evolution", Gondwana Res., 83, 132-140. https://doi.org/10.1016/j.gr.2020.02.003.
  85. Zhang, C., Zhu, D., Luo, Q., Liu, L., Liu, D., Yan, L. and Zhang, Y. (2017), "Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China", J. Asian Earth Sci., 146, 279-295. https://doi.org/10.1016/j.jseaes.2017.04.032.
  86. Zhang, L. and Huang, Y. (2023), "Investigating the role of nano in preserving the environment with new energy and preventing oil pollution", Adv. Nano Res., 15(6), 541-550. https://doi.org/10.12989/anr.2023.15.6.541.
  87. Zhang, P., Song, J. and Mahmoudi, T. (2023a), "Simulation and modeling for stability analysis of functionally graded nonuniform pipes with porosity-dependent properties", Steel Compos. Struct., 48(2), 235-250. https://doi.org/10.12989/scs.2023.48.2.235.
  88. Zhang, X., Li, J., Cui, Y., Habibi, M., Ali, H.E., Albaijan, I. and Mahmoudi, T. (2023b), "Static analysis of 2D-FG nonlocal porous tube using gradient strain theory and based on the first and higher-order beam theory", Steel Compos. Struct., 49(3), 293-306. https://doi.org/10.12989/scs.2023.49.3.293.
  89. Zhang, Z., Du, J. and Mahmoudi, T. (2023c), "Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil", Adv. Nano Res., 15(4), 355-366. https://doi.org/10.12989/anr.2023.15.4.355.
  90. Zhao, K., Chen, Y., Yu, F., Jian, W., Zheng, M. and Zeng, H. (2022), "A biodegradable magnesium alloy sample induced rat osteochondral defect repair through Wnt/β,-catenin signaling pathway", Adv. Nano Res., 12(3), 301-317. http://dx.doi.org/10.12989/ANR.2022.12.3.301.
  91. Zhu, B., Liang, H., Niu, B., Wang, H., Zhao, N. and Zhao, X. (2025), "Observer-based reinforcement learning for optimal fault-tolerant consensus control of nonlinear multi-agent systems via a dynamic event-triggered mechanism", Inform. Sci., 689, 121350. https://doi.org/10.1016/j.ins.2024.121350.