과제정보
The author would also like to thank the referee for a very thorough reading and many helpful corrections and suggestions to improve the quality of the paper.
참고문헌
- G. Al̀ı and J. K. Hunter, Diffractive nonlinear geometrical optics for variational wave equations and the Einstein equations, Comm. Pure Appl. Math. 60 (2007), no. 10, 1522–1557. https://doi.org/10.1002/cpa.20199
- A. Bressan and G. Chen, Generic regularity of conservative solutions to a nonlinear wave equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire 34 (2017), no. 2, 335–354. https://doi.org/10.1016/j.anihpc.2015.12.004
- A. Bressan and G. Chen, Lipschitz metrics for a class of nonlinear wave equations, Arch. Ration. Mech. Anal. 226 (2017), no. 3, 1303–1343. https://doi.org/10.1007/s00205-017-1155-7
- A. Bressan, G. Chen, and Q. Zhang, Unique conservative solutions to a variational wave equation, Arch. Ration. Mech. Anal. 217 (2015), no. 3, 1069–1101. https://doi.org/10.1007/s00205-015-0849-y
- A. Bressan and Y. Zheng, Conservative solutions to a nonlinear variational wave equation, Comm. Math. Phys. 266 (2006), no. 2, 471–497. https://doi.org/10.1007/s00220-006-0047-8
- H. Cai, G. Chen, and Y. Du, Uniqueness and regularity of conservative solution to a wave system modeling nematic liquid crystal, J. Math. Pures Appl. (9) 117 (2018), 185–220. https://doi.org/10.1016/j.matpur.2018.04.002
- G. Chen, Y. Hu, and Q. Zhang, Initial-boundary value problems for Poiseuille flow of nematic liquid crystal via full Ericksen-Leslie model, SIAM J. Math. Anal. 56 (2024), no. 2, 1809–1850. https://doi.org/10.1137/23M1574567
- G. Chen, T. Huang, and C. Liu, Finite time singularities for hyperbolic systems, SIAM J. Math. Anal. 47 (2015), no. 1, 758–785. https://doi.org/10.1137/140986359
- G. Chen, T. Huang, and W. Liu, Poiseuille flow of nematic liquid crystal suia the full Ericksen-Leslie model, Arch. Ration. Mech. Anal. 236 (2020), no. 2, 839-891. https://doi.org/10.1007/s00205-019-01484-4
- G. Chen and Y. Zheng, Singularity and existence for a wave system of nematic liquid crystals, J. Math. Anal. Appl. 398 (2013), no. 1, 170-188. https://doi.org/10.1016/j.jmaa.2012.08.048
- R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, 1948.
- W. Duan, Y. Hu, and G. Wang, Singularity and existence for a multidimensional variational wave equation arising from nematic liquid crystals, J. Math. Anal. Appl. 487 (2020), no. 2, 124026, 13 pp. https://doi.org/10.1016/j.jmaa.2020.124026
- R. T. Glassey, J. K. Hunter, and Y. Zheng, Singularities of a variational wave equation, J. Differential Equations 129 (1996), no. 1, 49–78. https://doi.org/10.1006/jdeq.1996.0111
- P. Godin, Global existence of a class of smooth 3D spherically symmetric flows of Chaplygin gases with variable entropy, J. Math. Pures Appl. (9) 87 (2007), no. 1, 91–117. https://doi.org/10.1016/j.matpur.2006.10.011
- L. Guo, T. Li, L. Pan, and X. Han, The Riemann problem with delta initial data for the one-dimensional Chaplygin gas equations with a source term, Nonlinear Anal. Real World Appl. 41 (2018), 588–606. https://doi.org/10.1016/j.nonrwa.2017.11.013
- L. Guo, T. Li, and G. Yin, The transition of Riemann solutions of the modified Chaplygin gas equations with friction to the solutions of the Chaplygin gas equations, ZAMM Z. Angew. Math. Mech. 102 (2022), no. 3, Paper No. e201800064, 15 pp. https://doi.org/10.1002/zamm.201800064
- Y. Hu, Conservative solutions to a one-dimensional nonlinear variational wave equation, J. Differential Equations 259 (2015), no. 1, 172–200. https://doi.org/10.1016/j.jde.2015.02.006
- Y. Hu, Singularity for a nonlinear degenerate hyperbolic-parabolic coupled system arising from nematic liquid crystals, Adv. Nonlinear Anal. 12 (2023), no. 1, Paper No. 20220268, 11 pp. https://doi.org/10.1515/anona-2022-0268
- Y. Hu and H. Guo, Singularity formation for the cylindrically symmetric rotating relativistic Euler equations of Chaplygin gases, Nonlinearity 37 (2024), no. 5, Paper No. 055006, 21 pp. https://doi.org/10.1088/1361-6544/ad351c
- Y. Hu and Y. Sugiyama, Well-posedness of the initial-boundary value problem for 1D degenerate quasilinear wave equations, Adv. Differential Equ. 30 (2025), no. 3-4, 177–206. https://doi.org/10.57262/ade030-0304-177
- Y. Hu and G. Wang, Existence of smooth solutions to a one-dimensional nonlinear degenerate variational wave equation, Nonlinear Anal. 165 (2017), 80–101. https://doi.org/10.1016/j.na.2017.09.009
- Y. Hu and G. Wang, On the Cauchy problem for a nonlinear variational wave equation with degenerate initial data, Nonlinear Anal. 176 (2018), 192–208. https://doi.org/10.1016/j.na.2018.06.013
- J. K. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math. 51 (1991), no. 6, 1498–1521. https://doi.org/10.1137/0151075
- K. Kato and Y. Sugiyama, Local existence and uniqueness theory for the second sound equation in one space dimension, J. Hyperbolic Differ. Equ. 9 (2012), no. 1, 177–193. https://doi.org/10.1142/S0219891612500051
- K. Kato and Y. Sugiyama, Blow up of solutions to the second sound equation in one space dimension, Kyushu J. Math. 67 (2013), no. 1, 129–142. https://doi.org/10.2206/kyushujm.67.129
- D.-X. Kong and C. Wei, Formation and propagation of singularities in one-dimensional Chaplygin gas, J. Geom. Phys. 80 (2014), 58–70. https://doi.org/10.1016/j.geomphys.2014.02.009
- D.-X. Kong, C. Wei, and Q. Zhang, Formation of singularities in one-dimensional Chaplygin gas, J. Hyperbolic Differ. Equ. 11 (2014), no. 3, 521–561. https://doi.org/10.1142/S0219891614500155
- G. Lai and M. Zhu, Formation of singularities of solutions to the compressible Euler equations for a Chaplygin gas, Appl. Math. Lett. 129 (2022), Paper No. 107978, 8 pp. https://doi.org/10.1016/j.aml.2022.107978
- L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, Vol. 6, Pergamon Press, Oxford, 1987.
- T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, RAM: Research in Applied Mathematics, 32, Masson, Paris, 1994.
- S. Li and C. Shen, On the wave interactions for the drift-flux equations with the Chaplygin gas, Monatsh. Math. 197 (2022), no. 4, 635–654. https://doi.org/10.1007/s00605-022-01688-z
- P. Lv and Y. Hu, Singularity for the one-dimensional rotating Euler equations of Chaplygin gases, Appl. Math. Lett. 138 (2023), Paper No. 108511, 7 pp. https://doi.org/10.1016/j.aml.2022.108511
- F. Qin, K. Song, and Q. Wang, Singularity formation for a nonlinear variational sine Gordon equation in a multidimensional space, Bull. Korean Math. Soc. 60 (2023), no. 6, 1697–1704. https://doi.org/10.4134/BKMS.b220859
- R. A. Saxton, Finite time boundary blowup for a degenerate, quasilinear Cauchy problem, in: J. Hale and J. Wiener (Eds.), Partial Differential Equations, in: Pitman Research Notes in Mathematics Series, vol. 273, 212–215, Longman, 1992.
- C. Shen, The Riemann problem for the Chaplygin gas equations with a source term, ZAMM Z. Angew. Math. Mech. 96 (2016), no. 6, 681–695. https://doi.org/10.1002/zamm.201500015
- K. Song, On singularity of a nonlinear variational sine-Gordon equation, J. Differential Equations 189 (2003), no. 1, 183–198. https://doi.org/10.1016/S0022-0396(02)00150-X
- M. Sun, The exact Riemann solutions to the generalized Chaplygin gas equations with friction, Commun. Nonlinear Sci. Numer. Simul. 36 (2016), 342–353. https://doi.org/10.1016/j.cnsns.2015.12.013
- M. Sun and J. Xin, On the delta shock wave interactions for the isentropic Chaplygin gas system consisting of three scalar equations, Filomat 33 (2019), no. 16, 5355–5373. https://doi.org/10.2298/FIL1916355
- Y. Zeng and Y. B. Hu, Global solutions to nonlinear wave equations arising from a variational principle, J. Nonlinear Var. Anal. 8 (2024), no. 1, 1–21. https://doi.org/10.23952/jnva.8.2024.1.01
- P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation, Arch. Ration. Mech. Anal. 166 (2003), no. 4, 303–319. https://doi.org/10.1007/s00205-002-0232-7
- P. Zhang and Y. Zheng, Conservative solutions to a system of variational wave equations of nematic liquid crystals, Arch. Ration. Mech. Anal. 195 (2010), no. 3, 701–727. https://doi.org/10.1007/s00205-009-0222-0
- P. Zhang and Y. Zheng, Energy conservatioe solutions to a one-dimensional full vari- ational wave system, Comm. Pure Appl. Math. 65 (2012), no. 5, 683-726. https://doi.org/10.1002/cpa.20380