DOI QR코드

DOI QR Code

FINITE TIME SINGULARITIES FOR THE MULTIDIMENSIONAL SECOND SOUND EQUATION WITH RADIAL SYMMETRY

  • Ying Zeng (College of Teacher Education Quzhou University)
  • 투고 : 2024.03.25
  • 심사 : 2024.07.24
  • 발행 : 2025.01.31

초록

We study the singularity formation of smooth solutions for the radially symmetric degenerate second sound equation, which describes the propagation of wave of temperature in superfluids. It is verified that, even for an arbitrarily small initial energy, its smooth solution may develop cusp-type singularity in the small period. The main difficulty is to prevent the occurrence of degeneracy of wave speed in a small time. Our proof is based on the method of characteristic and the energy estimate.

키워드

과제정보

The author would also like to thank the referee for a very thorough reading and many helpful corrections and suggestions to improve the quality of the paper.

참고문헌

  1. G. Al̀ı and J. K. Hunter, Diffractive nonlinear geometrical optics for variational wave equations and the Einstein equations, Comm. Pure Appl. Math. 60 (2007), no. 10, 1522–1557. https://doi.org/10.1002/cpa.20199
  2. A. Bressan and G. Chen, Generic regularity of conservative solutions to a nonlinear wave equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire 34 (2017), no. 2, 335–354. https://doi.org/10.1016/j.anihpc.2015.12.004
  3. A. Bressan and G. Chen, Lipschitz metrics for a class of nonlinear wave equations, Arch. Ration. Mech. Anal. 226 (2017), no. 3, 1303–1343. https://doi.org/10.1007/s00205-017-1155-7
  4. A. Bressan, G. Chen, and Q. Zhang, Unique conservative solutions to a variational wave equation, Arch. Ration. Mech. Anal. 217 (2015), no. 3, 1069–1101. https://doi.org/10.1007/s00205-015-0849-y
  5. A. Bressan and Y. Zheng, Conservative solutions to a nonlinear variational wave equation, Comm. Math. Phys. 266 (2006), no. 2, 471–497. https://doi.org/10.1007/s00220-006-0047-8
  6. H. Cai, G. Chen, and Y. Du, Uniqueness and regularity of conservative solution to a wave system modeling nematic liquid crystal, J. Math. Pures Appl. (9) 117 (2018), 185–220. https://doi.org/10.1016/j.matpur.2018.04.002
  7. G. Chen, Y. Hu, and Q. Zhang, Initial-boundary value problems for Poiseuille flow of nematic liquid crystal via full Ericksen-Leslie model, SIAM J. Math. Anal. 56 (2024), no. 2, 1809–1850. https://doi.org/10.1137/23M1574567
  8. G. Chen, T. Huang, and C. Liu, Finite time singularities for hyperbolic systems, SIAM J. Math. Anal. 47 (2015), no. 1, 758–785. https://doi.org/10.1137/140986359
  9. G. Chen, T. Huang, and W. Liu, Poiseuille flow of nematic liquid crystal suia the full Ericksen-Leslie model, Arch. Ration. Mech. Anal. 236 (2020), no. 2, 839-891. https://doi.org/10.1007/s00205-019-01484-4
  10. G. Chen and Y. Zheng, Singularity and existence for a wave system of nematic liquid crystals, J. Math. Anal. Appl. 398 (2013), no. 1, 170-188. https://doi.org/10.1016/j.jmaa.2012.08.048
  11. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, 1948.
  12. W. Duan, Y. Hu, and G. Wang, Singularity and existence for a multidimensional variational wave equation arising from nematic liquid crystals, J. Math. Anal. Appl. 487 (2020), no. 2, 124026, 13 pp. https://doi.org/10.1016/j.jmaa.2020.124026
  13. R. T. Glassey, J. K. Hunter, and Y. Zheng, Singularities of a variational wave equation, J. Differential Equations 129 (1996), no. 1, 49–78. https://doi.org/10.1006/jdeq.1996.0111
  14. P. Godin, Global existence of a class of smooth 3D spherically symmetric flows of Chaplygin gases with variable entropy, J. Math. Pures Appl. (9) 87 (2007), no. 1, 91–117. https://doi.org/10.1016/j.matpur.2006.10.011
  15. L. Guo, T. Li, L. Pan, and X. Han, The Riemann problem with delta initial data for the one-dimensional Chaplygin gas equations with a source term, Nonlinear Anal. Real World Appl. 41 (2018), 588–606. https://doi.org/10.1016/j.nonrwa.2017.11.013
  16. L. Guo, T. Li, and G. Yin, The transition of Riemann solutions of the modified Chaplygin gas equations with friction to the solutions of the Chaplygin gas equations, ZAMM Z. Angew. Math. Mech. 102 (2022), no. 3, Paper No. e201800064, 15 pp. https://doi.org/10.1002/zamm.201800064
  17. Y. Hu, Conservative solutions to a one-dimensional nonlinear variational wave equation, J. Differential Equations 259 (2015), no. 1, 172–200. https://doi.org/10.1016/j.jde.2015.02.006
  18. Y. Hu, Singularity for a nonlinear degenerate hyperbolic-parabolic coupled system arising from nematic liquid crystals, Adv. Nonlinear Anal. 12 (2023), no. 1, Paper No. 20220268, 11 pp. https://doi.org/10.1515/anona-2022-0268
  19. Y. Hu and H. Guo, Singularity formation for the cylindrically symmetric rotating relativistic Euler equations of Chaplygin gases, Nonlinearity 37 (2024), no. 5, Paper No. 055006, 21 pp. https://doi.org/10.1088/1361-6544/ad351c
  20. Y. Hu and Y. Sugiyama, Well-posedness of the initial-boundary value problem for 1D degenerate quasilinear wave equations, Adv. Differential Equ. 30 (2025), no. 3-4, 177–206. https://doi.org/10.57262/ade030-0304-177
  21. Y. Hu and G. Wang, Existence of smooth solutions to a one-dimensional nonlinear degenerate variational wave equation, Nonlinear Anal. 165 (2017), 80–101. https://doi.org/10.1016/j.na.2017.09.009
  22. Y. Hu and G. Wang, On the Cauchy problem for a nonlinear variational wave equation with degenerate initial data, Nonlinear Anal. 176 (2018), 192–208. https://doi.org/10.1016/j.na.2018.06.013
  23. J. K. Hunter and R. Saxton, Dynamics of director fields, SIAM J. Appl. Math. 51 (1991), no. 6, 1498–1521. https://doi.org/10.1137/0151075
  24. K. Kato and Y. Sugiyama, Local existence and uniqueness theory for the second sound equation in one space dimension, J. Hyperbolic Differ. Equ. 9 (2012), no. 1, 177–193. https://doi.org/10.1142/S0219891612500051
  25. K. Kato and Y. Sugiyama, Blow up of solutions to the second sound equation in one space dimension, Kyushu J. Math. 67 (2013), no. 1, 129–142. https://doi.org/10.2206/kyushujm.67.129
  26. D.-X. Kong and C. Wei, Formation and propagation of singularities in one-dimensional Chaplygin gas, J. Geom. Phys. 80 (2014), 58–70. https://doi.org/10.1016/j.geomphys.2014.02.009
  27. D.-X. Kong, C. Wei, and Q. Zhang, Formation of singularities in one-dimensional Chaplygin gas, J. Hyperbolic Differ. Equ. 11 (2014), no. 3, 521–561. https://doi.org/10.1142/S0219891614500155
  28. G. Lai and M. Zhu, Formation of singularities of solutions to the compressible Euler equations for a Chaplygin gas, Appl. Math. Lett. 129 (2022), Paper No. 107978, 8 pp. https://doi.org/10.1016/j.aml.2022.107978
  29. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics, Vol. 6, Pergamon Press, Oxford, 1987.
  30. T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, RAM: Research in Applied Mathematics, 32, Masson, Paris, 1994.
  31. S. Li and C. Shen, On the wave interactions for the drift-flux equations with the Chaplygin gas, Monatsh. Math. 197 (2022), no. 4, 635–654. https://doi.org/10.1007/s00605-022-01688-z
  32. P. Lv and Y. Hu, Singularity for the one-dimensional rotating Euler equations of Chaplygin gases, Appl. Math. Lett. 138 (2023), Paper No. 108511, 7 pp. https://doi.org/10.1016/j.aml.2022.108511
  33. F. Qin, K. Song, and Q. Wang, Singularity formation for a nonlinear variational sine Gordon equation in a multidimensional space, Bull. Korean Math. Soc. 60 (2023), no. 6, 1697–1704. https://doi.org/10.4134/BKMS.b220859
  34. R. A. Saxton, Finite time boundary blowup for a degenerate, quasilinear Cauchy problem, in: J. Hale and J. Wiener (Eds.), Partial Differential Equations, in: Pitman Research Notes in Mathematics Series, vol. 273, 212–215, Longman, 1992.
  35. C. Shen, The Riemann problem for the Chaplygin gas equations with a source term, ZAMM Z. Angew. Math. Mech. 96 (2016), no. 6, 681–695. https://doi.org/10.1002/zamm.201500015
  36. K. Song, On singularity of a nonlinear variational sine-Gordon equation, J. Differential Equations 189 (2003), no. 1, 183–198. https://doi.org/10.1016/S0022-0396(02)00150-X
  37. M. Sun, The exact Riemann solutions to the generalized Chaplygin gas equations with friction, Commun. Nonlinear Sci. Numer. Simul. 36 (2016), 342–353. https://doi.org/10.1016/j.cnsns.2015.12.013
  38. M. Sun and J. Xin, On the delta shock wave interactions for the isentropic Chaplygin gas system consisting of three scalar equations, Filomat 33 (2019), no. 16, 5355–5373. https://doi.org/10.2298/FIL1916355
  39. Y. Zeng and Y. B. Hu, Global solutions to nonlinear wave equations arising from a variational principle, J. Nonlinear Var. Anal. 8 (2024), no. 1, 1–21. https://doi.org/10.23952/jnva.8.2024.1.01
  40. P. Zhang and Y. Zheng, Weak solutions to a nonlinear variational wave equation, Arch. Ration. Mech. Anal. 166 (2003), no. 4, 303–319. https://doi.org/10.1007/s00205-002-0232-7
  41. P. Zhang and Y. Zheng, Conservative solutions to a system of variational wave equations of nematic liquid crystals, Arch. Ration. Mech. Anal. 195 (2010), no. 3, 701–727. https://doi.org/10.1007/s00205-009-0222-0
  42. P. Zhang and Y. Zheng, Energy conservatioe solutions to a one-dimensional full vari- ational wave system, Comm. Pure Appl. Math. 65 (2012), no. 5, 683-726. https://doi.org/10.1002/cpa.20380