과제정보
The authors would like to thank the reviewer for the valuable comments and constructive suggestions.
참고문헌
- N. Abe and K. Hasegawa, An affine submersion with horizontal distribution and its applications, Differential Geom. Appl. 14 (2001), no. 3, 235–250. https://doi.org/10.1016/S0926-2245(01)00034-1
- T. Aubin, Métriques riemanniennes et courbure, J. Differential Geometry 4 (1970), 383–424. http://projecteuclid.org/euclid.jdg/1214429638
- H. Aytimur and C. Özgür, On cosymplectic-like statistical submersions, Mediterr. J. Math. 16 (2019), no. 3, Paper No. 70, 14 pp. https://doi.org/10.1007/s00009-019-1332-z
- O. E. Barndorff-Nielsen and P. E. Jupp, Differential geometry, profile likelihood, L-sufficiency and composite transformation models, Ann. Statist. 16 (1988), no. 3, 1009–1043. https://doi.org/10.1214/aos/1176350946
- A. M. Blaga, On gradient η-Einstein solitons, Kragujevac J. Math. 42 (2018), no. 2, 229–237. https://doi.org/10.5937/kgjmath1802229b
- A. M. Blaga and B.-Y. Chen, Gradient solitons on statistical manifolds, J. Geom. Phys. 164 (2021), Paper No. 104195, 10 pp. https://doi.org/10.1016/j.geomphys.2021.104195
- A. M. Blaga and B.-Y. Chen, Harmonic forms and generalized solitons, Results Math. 79 (2024), no. 1, Paper No. 16, 18 pp. https://doi.org/10.1007/s00025-023-02041-y
- G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, and L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math. 287 (2017), no. 2, 337–370. https://doi.org/10.2140/pjm.2017.287.337
- G. Catino and L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66–94. https://doi.org/10.1016/j.na.2015.10.021
- S. K. Chaubey, M. D. Siddiqi, and S. K. Yadav, Almost η-Ricci-Bourguignon solitons on submersions from Riemannian submersions, Balkan J. Geom. Appl. 27 (2022), no. 1, 24–38.
- B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. (Basel) 60 (1993), no. 6, 568–578. https://doi.org/10.1007/BF01236084
- B.-Y. Chen, Some new obstructions to minimal and Lagrangian isometric immersions, Japan. J. Math. (N.S.) 26 (2000), no. 1, 105–127. https://doi.org/10.4099/math1924.26.105
- B.-Y. Chen, Riemannian submersions, minimal immersions and cohomology class, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 10, 162–167. http://projecteuclid.org/euclid.pja/1135791768
- B.-Y. Chen, Pseudo-Riemannian Geometry, δ-Invariants and Applications, World Scientific, Hackensack, NJ, 2011.
- S. Deshmukh, Conformal vector fields and eigenvectors of Laplacian operator, Math. Phys. Anal. Geom. 15 (2012), no. 2, 163–172. https://doi.org/10.1007/s11040-012-9106-x
- Ş. Eken Meriç, M. Gülbahar, and E. Kılıç, Some inequalities for Riemannian submersions, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 63 (2017), no. 3, 471-482.
- Ş. Eken Meriç and E. Kılıç, Riemannian submersions whose total manifolds admit a Ricci soliton, Int. J. Geom. Methods Mod. Phys. 16 (2019), no. 12, 1950196, 12 pp. https://doi.org/10.1142/S0219887819501962
- M. Falcitelli, S. Ianuş, and A. M. Pastore, Riemannian submersions and related topics, World Sci. Publishing, Inc., River Edge, NJ, 2004.
- A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715–737.
- M. Gülbahar, Ş. Eken Meriç, and E. Kılıç, Sharp inequalities involving the Ricci curvature for Riemannian submersions, Kragujevac J. Math. 41 (2017), no. 2, 279–293. https://doi.org/10.5937/kgjmath1702279g
- M. Gülbahar, Ş. Eken Meriç, and E. Kılıç, Chen invariants for Riemannian submersions and their applications, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 71 (2022), no. 4, 1007–1022. https://doi.org/10.31801/cfsuasmas.990670
- R. S. Hamilton, The Ricci flow on surfaces, Mathematics and General Relativity (Santa Cruz, CA, 1986), 237–262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/071/954419
- S. Kazan and K. Takano, Anti-invariant holomorphic statistical submersions, Results Math. 78 (2023), no. 4, Paper No. 128, 18 pp. https://doi.org/10.1007/s00025-023-01904-8
- B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469. http://projecteuclid.org/euclid.mmj/1028999604 1028999604
- B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8 (2010), no. 3, 437–447. https://doi.org/10.2478/s11533-010-0023-6
- B. Sahin, Riemannian Submersions, Riemannian Maps in Hermitian Geometry, and Their Applications, Elsevier/Academic Press, London, 2017.
- M. D. Siddiqi, Ricci ρ-soliton and geometrical structure in a dust fluid and viscous fluid spacetime, Bulg. J. Phys. 46 (2019), 163–173.
- M. D. Siddiqi, A. H. Alkhaldi, M. A. Khan, and A. N. Siddiqui, Conformal η-Ricci solitons on Riemannian submersions under canonical variation, Axioms 11, 594 (2022).
- M. D. Siddiqi, F. Mofarreh, M. A. Akyol, and A. H. Hakami, η-Ricci-Yamabe Solitons along Riemannian Submersions, Axioms, 12, 796, (2023), https://doi.org/10.3390/axioms12080796
- M. D. Siddiqi, A. N. Siddiqui, F. Mofarreh, and H. Aytimur, A study of Kenmotsu-like statistical submersions, Symmetry, 14(2022), no. 8, 1–13.
- A. N. Siddiqui, B.-Y. Chen, and O. Bahadir, Statistical solitons and inequalities for statistical warped product submanifolds, Mathematics 7(9), Paper No. 797, 19 pp (2019). https://doi.org/10.3390/math7090797
- A. N. Siddiqui Diop and M. D. Siddiqi, Almost Ricci-Bourguignon solitons and geometrical structure in a relativistic perfect fluid spacetime, Balkan J. Geom. Appl. 26 (2021), no. 2, 126–138.
- A. N. Siddiqui Diop, M. D. Siddiqi, A. H. Alkhaldi, and A. Ali, Lower bounds on statistical submersions with vertical Casorati curvatures, Int. J. Geom. Methods Mod. Phys. 19 (2022), no. 3, Paper No. 2250044, 25 pp. https://doi.org/10.1142/S021988782250044X
- K. Takano, Statistical manifolds with almost complex structures and its statistical submersions, Tensor (N.S.) 65 (2004), no. 2, 123–137.
- K. Takano, Examples of the statistical submersion on the statistical model, Tensor (N.S.) 65 (2004), no. 2, 170–178.
- K. Takano, Statistical manifolds with almost contact structures and its statistical submersions, J. Geom. 85 (2006), no. 1-2, 171–187. https://doi.org/10.1007/s00022-006-0052-2
- K. Takano, E. Erkan, and M. Gilbahar, Locally product-like statistical submersions, Turkish J. Math. 47 (2023), no. 2, 846-869. https://doi.org/10.55730/1300-0098.3397
- K. Takano and S. Kazan, Statistical submersions with parallel almost complex structures, Mediterr. J. Math. 21 (2024), no. 3, Paper No. 109, 26 pp. https://doi.org/10.1007/s00009-024-02621-4
- G.-E. Vı̂lcu, Almost product structures on statistical manifolds and para-Kähler-like statistical submersions, Bull. Sci. Math. 171 (2021), Paper No. 103018, 21 pp. https://doi.org/10.1016/j.bulsci.2021.103018
- A.-D. Vı̂lcu and G.-E. Vı̂lcu, Statistical manifolds with almost quaternionic structures and quaternionic Kähler-like statistical submersions, Entropy 17 (2015), no. 9, 6213–6228. https://doi.org/10.3390/e17096213
- B. Watson, G, G'-Riemannian submersions and nonlinear gauge field equations of general relativity, Global Analysis-Analysis on Manifolds, 324-349, Teubner-Texte Math., 57, Teubner, Leipzig, 1983.