과제정보
This research was funded by a 2023 Research Grant from Sangmyung University (2023-A000-0284).
참고문헌
- J. L. Anderson, H. R. Witting, A relativistic relaxation-time model for the Boltzmann equation, Physica, 74, (1974), 466–488.
- P. Andries, K. Aoki, and B. Perthame, A consistent BGK-type model for gas mixtures, J. Statist. Phys. 106 (2002), no. 5-6, 993–1018. https://doi.org/10.1023/A:1014033703134
- G.-C. Bae, C. Klingenberg, M. Pirner, and S. Yun, BGK model of the multi-species Uehling-Uhlenbeck equation, Kinet. Relat. Models 14 (2021), no. 1, 25–44. https://doi.org/10.3934/krm.2020047
- G.-C. Bae and S.-B. Yun, Quantum BGK model near a global Fermi-Dirac distribution, SIAM J. Math. Anal. 52 (2020), no. 3, 2313–2352. https://doi.org/10.1137/19M1270021
- G.-C. Bae and S.-B. Yun, The Shakhov model near a global Maxwellian, Nonlinear Anal. Real World Appl. 70 (2023), Paper No. 103742, 33 pp. https://doi.org/10.1016/j.nonrwa.2022.103742
- F. Berthelin and F. Bouchut, Solution with finite energy to a BGK system relaxing to isentropic gas dynamics, Ann. Fac. Sci. Toulouse Math. (6) 9 (2000), no. 4, 605–630.
- F. Berthelin and F. Bouchut, Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics, Asymptot. Anal. 31 (2002), no. 2, 153–176.
- F. Berthelin and F. Bouchut, Relaxation to isentropic gas dynamics for a BGK system with single kinetic entropy, Methods Appl. Anal. 9 (2002), no. 2, 313–327. https://doi.org/10.4310/MAA.2002.v9.n2.a7
- F. Berthelin and A. F. Vasseur, From kinetic equations to multidimensional isentropic gas dynamics before shocks, SIAM J. Math. Anal. 36 (2005), no. 6, 1807–1835. https://doi.org/10.1137/S0036141003431554
- P. L. Bhatnagar, E. P. Gross, and M. L. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, (1954), 511–525.
- A. V. Bobylev, M. Bisi, M. Groppi, G. Spiga, and I. F. Potapenko, A general consistent BGK model for gas mixtures, Kinet. Relat. Models 11 (2018), no. 6, 1377–1393. https://doi.org/10.3934/krm.2018054
- F. Bouchut, Construction of BGK models with a family of kinetic entropies for a given system of conservation laws, J. Statist. Phys. 95 (1999), no. 1-2, 113–170. https://doi.org/10.1023/A:1004525427365
- F. Bouchut, Entropy satisfying flux vector splittings and kinetic BGK models, Numer. Math. 94 (2003), no. 4, 623–672. https://doi.org/10.1007/s00211-002-0426-9
- S. Brull, V. Pavan, and J. Schneider, Derivation of a BGK model for mixtures, Eur. J. Mech. B Fluids 33 (2012), 74–86. https://doi.org/10.1016/j.euromechflu.2011.12.
- Y.-P. Choi and B.-H. Hwang, From BGK-alignment model to the pressured Euler alignment system with singular communication weights, J. Differential Equations 379 (2024), 363–412. https://doi.org/10.1016/j.jde.2023.10.010
- Y.-P. Choi and B.-H. Hwang, Global existence of weak solutions to a BGK model relaxing to the barotropic Euler equations, Nonlinear Anal. 238 (2024), Paper No. 113414, 42 pp. https://doi.org/10.1016/j.na.2023.113414
- C. M. Cuesta, S. Hittmeir, and C. Schmeiser, Weak shocks of a BGK kinetic model for isentropic gas dynamics, Kinet. Relat. Models 3 (2010), no. 2, 255–279. https://doi.org/10.3934/krm.2010.3.255
- Y. Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math. 55 (2002), no. 9, 1104–1135. https://doi.org/10.1002/cpa.10040
- Y. Guo, The Vlasov-Maxwell-Boltzmann system near Maxwellians, Invent. Math. 153 (2003), no. 3, 593–630. https://doi.org/10.1007/s00222-003-0301-z
- Y. Guo, The Boltzmann equation in the whole space, Indiana Univ. Math. J. 53 (2004), no. 4, 1081–1094. https://doi.org/10.1512/iumj.2004.53.2574
- L. H. Holway Jr., Kinetic theory of shock structure using an ellipsoidal distribution function, Rarefied Gas Dynamics, Vol. I (Proc. Fourth Internat. Sympos., Univ. Toronto, 1964), 193–215, Academic Press, New York, 1965.
- B.-H. Hwang, M.-S. Lee, and S.-B. Yun, Relativistic BGK model for gas mixtures, J. Stat. Phys. 191 (2024), no. 5, Paper No. 59, 27 pp. https://doi.org/10.1007/s10955-024-03271-2
- B.-H. Hwang, T. Ruggeri, and S.-B. Yun, On a relativistic BGK model for polyatomic gases near equilibrium, SIAM J. Math. Anal. 54 (2022), no. 3, 2906–2947. https://doi.org/10.1137/21M1404946
- I. M. Khalatnikov, Introduction to the Theory of Superfluidity (Russian), Izdat. 'Nauka', Moscow, 1965.
- C. Klingenberg, M. Pirner, and G. Puppo, A consistent kinetic model for a two component mixture with an application to plasma, Kinet. Relat. Models 10 (2017), no. 2, 445–465. https://doi.org/10.3934/krm.2017017
- P.-L. Lions, B. Perthame, and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc. 7 (1994), no. 1, 169–191. https://doi.org/10.2307/2152725
- P.-L. Lions, B. Perthame, and E. Tadmor, Kinetic formulation of the isentropic gas dynamics and p-systems, Comm. Math. Phys. 163 (1994), no. 2, 415–431. http://projecteuclid.org/euclid.cmp/1104270470 104270470
- L. Liu and M. Pirner, Hypocoercivity for a BGK model for gas mixtures, J. Differential Equations 267 (2019), no. 1, 119–149. https://doi.org/10.1016/j.jde.2019.01.006
- C. Marle, Modele cinétique pour l'établissement des lois de la conduction de la chaleur et de la viscosité en théorie de la relativité, C. R. Acad. Sci. Paris, 260, (1965), 6539–6541.
- C.-M. Marle, Sur l'etablissement des équations de l'hydrodynamique des fluides relativistes dissipatifs. II. Méthodes de résolution approchée de l'équation de Boltzmann relativiste, Ann. Inst. H. Poincaré Sect. A (N.S.) 10 (1969), 127–194.
- S. Pennisi, T. Ruggeri, A new BGK model for relativistic kinetic theory of monatomic and polyatomic gases, J. Phys. Conf. Ser., 1035, (2018), 012005.
- B. Perthame and E. Tadmor, A kinetic equation with kinetic entropy functions for scalar conservation laws, Comm. Math. Phys. 136 (1991), no. 3, 501–517. http://projecteuclid.org/euclid.cmp/1104202434 104202434
- E. M. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid dynamics, 3, (1968), 95–96.
- P. Welander, On the temperature jump in a rarefied gas, Ark. Fys. 7 (1954), 507–553.
- S.-B. Yun, Cauchy problem for the Boltzmann-BGK model near a global Maxwellian, J. Math. Phys. 51 (2010), no. 12, 123514, 24 pp. https://doi.org/10.1063/1.3516479
- S.-B. Yun, Elipsoidal BGK model near a global Macuellian, SIAM J. Math. Anal. 47 (2015), no. 3, 2324-2354. https://doi.org/10.1137/130932399