DOI QR코드

DOI QR Code

S-FLAT COTORSION PAIR

  • Driss Bennis (Department of Mathematics Faculty of Sciences Mohammed V University in Rabat Rabat) ;
  • Ayoub Bouziri (Department of Mathematics Faculty of Sciences Mohammed V University in Rabat Rabat)
  • 투고 : 2024.03.11
  • 심사 : 2024.08.29
  • 발행 : 2025.01.31

초록

Let R be a commutative ring, and let S be a multiplicative subset of R. In this paper, we investigate the notion of S-cotorsion modules. An R-module C is called S-cotorsion if $Ext_{R}^{1}(F,C)=0$ for every S-flat R-module F. Among other results, we establish that the pair (S𝓕, S𝓒), where S𝓕 denotes the class of all S-flat R-modules and S𝓒 denotes the class of all S-cotorsion modules, forms a hereditary perfect cotorsion pair. As applications, we provide characterizations of S-perfect rings in terms of S-cotorsion modules. We conclude the paper with results on S𝓕-preenvelopes. Namely, we prove that if every module has an S𝓕-preenvelope, then R is S-coherent. Furthermore, we establish the converse under the condition that RS is a finitely presented R-module.

키워드

참고문헌

  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics, Vol. 13, Springer, New York, 1974.
  2. J. Asensio Mayor and J. Martinez Hernandez, On flat and projective enwelopes, J. AI-gebra 160 (1993), no. 2, 434-440. https://doi.org/10.1006/jabr.1993.1195
  3. R. A. K. Assaad and X. Zhang, S-cotorsion modules and dimensions, Hacet. J. Math. Stat. 52 (2023), no. 2, 410-419.
  4. D. Bennis and A. Bouziri, When every S-flat module is (flat) projective, Comm. Algebra 52 (2024), no. 10, 4480–4491. https://doi.org/10.1080/00927872.2024.2348126
  5. D. Bennis and M. El Hajoui, On S-coherence, J. Korean Math. Soc. 55 (2018), no. 6, 1499–1512. https://doi.org/10.4134/JKMS.j170797
  6. S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457–473. https://doi.org/10.2307/1993382
  7. N. Ding, On envelopes with the unique mapping property, Comm. Algebra 24 (1996), no. 4, 1459–1470. https://doi.org/10.1080/00927879608825646
  8. E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189–209. https://doi.org/10.1007/BF02760849
  9. E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter Expositions in Mathematics, 30, de Gruyter, Berlin, 2000. https://doi.org/10.1515/9783110803662
  10. E. E. Enochs, O. M. G. Jenda, and J. A. Lopez-Ramos, The existence of Gorenstein flat covers, Math. Scand. 94 (2004), no. 1, 46–62. https://doi.org/10.7146/math.scand.a-14429
  11. S. Glaz, Commutative Coherent Rings, Lecture Notes in Mathematics, 1371, Springer, Berlin, 1989. https://doi.org/10.1007/BFb0084570
  12. H. Holm and P. Jørgensen, Covers, precovers, and purity, Illinois J. Math. 52 (2008), no. 2, 691–703. http://projecteuclid.org/euclid.ijm/1248355359
  13. L. Mao and N. Ding, Notes on cotorsion modules, Comm. Algebra 33 (2005), no. 1, 349–360. https://doi.org/10.1081/AGB-200041029
  14. W. Qi, X. Zhang, and W. Zhao, New characterizations of S-coherent rings, J. Algebra Appl. 22 (2023), no. 4, Paper No. 2350078, 14 pp. https://doi.org/10.1142/S0219498823500780
  15. J. J. Rotman, An introduction to Homological Algebra, second edition, Universitext, Springer, New York, 2009. https://doi.org/10.1007/b98977
  16. J. Trlifaj, Covers, Envelopes, and Cotorsion Theories, Lecture notes for the workshop. Homological Methods in Module Theory. Cortona, September, 2000.
  17. F. Wang and H. Kim, Foundations of Commutative Rings and Their modules, Algebra and Applications, 22, Springer, Singapore, 2016. https://doi.org/10.1007/978-981-10-3337-7
  18. J. Xu, Flat Covers of Modules, Lecture Notes in Mathematics, 1634, Springer, Berlin, 1996. https://doi.org/10.1007/BFb0094173