DOI QR코드

DOI QR Code

The Dual Role of Survival Genes in Neurons and Cancer Cells: a Strategic Clinical Application of DX2 in Neurodegenerative Diseases and Cancer

  • Kyunghwa Baek (Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University)
  • Received : 2024.08.14
  • Accepted : 2024.10.30
  • Published : 2025.01.01

Abstract

In cancer cells, survival genes contribute to uncontrolled growth and the survival of malignant cells, leading to tumor progression. Neurons are post-mitotic cells, fully differentiated and non-dividing after neurogenesis and survival genes are essential for cellular longevity and proper functioning of the nervous system. This review explores recent research findings regarding the role of survival genes, particularly DX2, in degenerative neuronal tissue cells and cancer cells. Survival gene DX2, an exon 2-deleted splice variant of AIMP2 (aminoacyl-tRNA synthetase-interacting multi-functional protein 2), was found to be overexpressed in various cancer types. The potential of DX2 inhibitors as an anti-cancer drug arises from its unique ability to interact with various oncoproteins, such as KRAS and HSP70. Meanwhile, AIMP2 has been reported as a multifunctional cell death-inducing gene, and survival gene DX2 directly and indirectly inhibits AIMP2-induced cell death. DX2 plays multifaceted survival roles in degenerating neurons via various signaling pathways, including PARP 1, TRAF2, and p53 pathways. It is noteworthy that genes that were previously classified as oncogenes, such as AKT and XBP1, are now being considered as curative transgenes for targeting neurodegenerative diseases. A strategic direction for clinical application of survival genes in neurodegenerative disease and in cancer is justified.

Keywords

Acknowledgement

I gratefully thank Hyorin Hwang and Minhak Lee for manuscript editing. This work was supported by the National Research Foundation of Korea (NRF) Grant (NRF-2019R1A2C1006752) and Academic Research Support Program of Gangneung-Wonju National University (2022100153).

References

  1. Al-Chalabi, A. and Hardiman, O. (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat. Rev. Neurol. 9, 617-628.
  2. Aloe, L. and Fiore, M. (1997) TNF-alpha expressed in the brain of transgenic mice lowers central tyroxine hydroxylase immunoreactivity and alters grooming behavior. Neurosci. Lett. 238, 65-68.
  3. Attner, B., Lithman, T., Noreen, D. and Olsson, H. (2010) Low cancer rates among patients with dementia in a population-based register study in Sweden. Dement. Geriatr. Cogn. Disord. 30, 39-42.
  4. Bajaj, A., Driver, J. A. and Schernhammer, E. S. (2010) Parkinson's disease and cancer risk: a systematic review and meta-analysis. Cancer Causes Control. 21, 697-707.
  5. Bommiasamy, H., Back, S. H., Fagone, P., Lee, K., Meshinchi, S., Vink, E., Sriburi, R., Frank, M., Jackowski, S., Kaufman, R. J. and Brewer, J. W. (2009) ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J. Cell Sci. 122, 1626-1636.
  6. Brown, J. S. and Banerji, U. (2017) Maximising the potential of AKT inhibitors as anti-cancer treatments. Pharmacol. Ther. 172, 101-115.
  7. Bucchia, M., Ramirez, A., Parente, V., Simone, C., Nizzardo, M., Magri, F., Dametti, S. and Corti, S. (2015) Therapeutic development in amyotrophic lateral sclerosis. Clin. Ther. 37, 668-680.
  8. Chen, S., Chen, J., Hua, X., Sun, Y., Cui, R., Sha, J. and Zhu, X. (2020a) The emerging role of XBP1 in cancer. Biomed. Pharmacother. 127, 110069.
  9. Chen, W., Hu, Y. and Ju, D. (2020b) Gene therapy for neurodegenerative disorders: advances, insights and prospects. Acta Pharm. Sin. B 10, 1347-1359.
  10. Chertoff, M., Di Paolo, N., Schoeneberg, A., Depino, A., Ferrari, C., Wurst, W., Pfizenmaier, K., Eisel, U. and Pitossi, F. (2011) Neuroprotective and neurodegenerative effects of the chronic expression of tumor necrosis factor alpha in the nigrostriatal dopaminergic circuit of adult mice. Exp. Neurol. 227, 237-251.
  11. Choi, J. W., Kim, D. G., Lee, A. E., Kim, H. R., Lee, J. Y., Kwon, N. H., Shin, Y. K., Hwang, S. K., Chang, S. H., Cho, M. H., Choi, Y. L., Kim, J., Oh, S. H., Kim, B., Kim, S. Y., Jeon, H. S., Park, J. Y., Kang, H. P., Park, B. J., Han, J. M. and Kim, S. (2011) Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis. PLoS Genet. 7, e1001351.
  12. Choi, J. W., Kim, D. G., Park, M. C., Um, J. Y., Han, J. M., Park, S. G., Choi, E. C. and Kim, S. (2009a) AIMP2 promotes TNFalpha-dependent apoptosis via ubiquitin-mediated degradation of TRAF2. J. Cell Sci. 122, 2710-2715.
  13. Choi, J. W., Lee, J. W., Kim, J. K., Jeon, H. K., Choi, J. J., Kim, D. G., Kim, B. G., Nam, D. H., Kim, H. J., Yun, S. H. and Kim, S. (2012) Splicing variant of AIMP2 as an effective target against chemoresistant ovarian cancer. J. Mol. Cell Biol. 4, 164-173.
  14. Choi, J. W., Um, J. Y., Kundu, J. K., Surh, Y. J. and Kim, S. (2009b) Multidirectional tumor-suppressive activity of AIMP2/p38 and the enhanced susceptibility of AIMP2 heterozygous mice to carcinogenesis. Carcinogenesis 30, 1638-1644.
  15. Cowan, K., Anichtchik, O. and Luo, S. (2019) Mitochondrial integrity in neurodegeneration. CNS Neurosci. Ther. 25, 825-836.
  16. d'Errico, P. and Meyer-Luehmann, M. (2020) Mechanisms of pathogenic tau and Abeta protein spreading in Alzheimer's disease. Front. Aging Neurosci. 12, 265.
  17. De Lella Ezcurra, A. L., Chertoff, M., Ferrari, C., Graciarena, M. and Pitossi, F. (2010) Chronic expression of low levels of tumor necrosis factor-alpha in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and microglia/macrophage activation. Neurobiol. Dis. 37, 630-640.
  18. de Murcia, J. M., Niedergang, C., Trucco, C., Ricoul, M., Dutrillaux, B., Mark, M., Oliver, F. J., Masson, M., Dierich, A., LeMeur, M., Walztinger, C., Chambon, P. and de Murcia, G. (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl. Acad. Sci. U. S. A. 94, 7303-7307.
  19. Dewal, M. B., DiChiara, A. S., Antonopoulos, A., Taylor, R. J., Harmon, C. J., Haslam, S. M., Dell, A. and Shoulders, M. D. (2015) XBP1s links the unfolded protein response to the molecular architecture of mature N-glycans. Chem. Biol. 22, 1301-1312.
  20. Driver, J. A., Beiser, A., Au, R., Kreger, B. E., Splansky, G. L., Kurth, T., Kiel, D. P., Lu, K. P., Seshadri, S. and Wolf, P. A. (2012) Inverse association between cancer and Alzheimer's disease: results from the Framingham Heart Study. BMJ 344, e1442.
  21. Ferrari, C. C., Pott Godoy, M. C., Tarelli, R., Chertoff, M., Depino, A. M. and Pitossi, F. J. (2006) Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol. Dis. 24, 183-193.
  22. Frain, L., Swanson, D., Cho, K., Gagnon, D., Lu, K. P., Betensky, R. A. and Driver, J. (2017) Association of cancer and Alzheimer's disease risk in a national cohort of veterans. Alzheimers Dement. 13, 1364-1370.
  23. Freedman, D. M. and Pfeiffer, R. M. (2016) Factors in association between Parkinson disease and risk of cancer in Taiwan. JAMA Oncol. 2, 144-145.
  24. Freedman, D. M., Wu, J., Chen, H., Kuncl, R. W., Enewold, L. R., Engels, E. A., Freedman, N. D. and Pfeiffer, R. M. (2016) Associations between cancer and Alzheimer's disease in a U.S. Medicare population. Cancer Med. 5, 2965-2976.
  25. Ganguli, M. (2015) Cancer and dementia: it's complicated. Alzheimer Dis. Assoc. Disord. 29, 177-182.
  26. Goyal, A., Agrawal, A., Verma, A. and Dubey, N. (2023) The PI3KAKT pathway: a plausible therapeutic target in Parkinson's disease. Exp. Mol. Pathol. 129, 104846.
  27. Guo, F., Liu, X., Cai, H. and Le, W. (2018) Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol. 28, 3-13.
  28. Ham, S., Yun, S. P., Kim, H., Kim, D., Seo, B. A., Kim, H., Shin, J. Y., Dar, M. A., Lee, G. H., Lee, Y. I., Kim, D., Kim, S., Kweon, H. S., Shin, J. H., Ko, H. S. and Lee, Y. (2020) Amyloid-like oligomerization of AIMP2 contributes to alpha-synuclein interaction and Lewylike inclusion. Sci. Transl. Med. 12, eaax0091
  29. Han, J. M., Park, B. J., Park, S. G., Oh, Y. S., Choi, S. J., Lee, S. W., Hwang, S. K., Chang, S. H., Cho, M. H. and Kim, S. (2008) AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53. Proc. Natl. Acad. Sci. U. S. A. 105, 11206-11211.
  30. Hetz, C., Martinon, F., Rodriguez, D. and Glimcher, L. H. (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol. Rev. 91, 1219-1243.
  31. Hollville, E., Romero, S. E. and Deshmukh, M. (2019) Apoptotic cell death regulation in neurons. FEBS J. 286, 3276-3298.
  32. Hong, S. J., Dawson, T. M. and Dawson, V. L. (2004) Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol. Sci. 25, 259-264.
  33. Huck, B. R. and Mochalkin, I. (2017) Recent progress towards clinically relevant ATP-competitive Akt inhibitors. Bioorg. Med. Chem. Lett. 27, 2838-2848.
  34. Jorgensen, I., Rayamajhi, M. and Miao, E. A. (2017) Programmed cell death as a defence against infection. Nat. Rev. Immunol. 17, 151-164.
  35. Kalimuthu, S. and Se-Kwon, K. (2013) Cell survival and apoptosis signaling as therapeutic target for cancer: marine bioactive compounds. Int. J. Mol. Sci. 14, 2334-2354.
  36. Kim, D. G., Choi, Y., Lee, Y., Lim, S., Kong, J., Song, J., Roh, Y., Harmalkar, D. S., Lee, K., Goo, J. I., Cho, H. Y., Mushtaq, A. U., Lee, J., Park, S. H., Kim, D., Min, B. S., Lee, K. Y., Jeon, Y. H., Lee, S., Lee, K. and Kim, S. (2022) AIMP2-DX2 provides therapeutic interface to control KRAS-driven tumorigenesis. Nat. Commun. 13, 2572.
  37. Kim, J. H., Han, J. M. and Kim, S. (2014) Protein-protein interactions and multi-component complexes of aminoacyl-tRNA synthetases. Top. Curr. Chem. 344, 119-144.
  38. Kim, M. J., Park, B. J., Kang, Y. S., Kim, H. J., Park, J. H., Kang, J. W., Lee, S. W., Han, J. M., Lee, H. W. and Kim, S. (2003) Downregulation of FUSE-binding protein and c-myc by tRNA synthetase cofactor p38 is required for lung cell differentiation. Nat. Genet. 34, 330-336.
  39. Ko, H. S., von Coelln, R., Sriram, S. R., Kim, S. W., Chung, K. K., Pletnikova, O., Troncoso, J., Johnson, B., Saffary, R., Goh, E. L., Song, H., Park, B. J., Kim, M. J., Kim, S., Dawson, V. L. and Dawson, T. M. (2005) Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J. Neurosci. 25, 7968-7978
  40. Kook, M. G., Byun, M. R., Lee, S. M., Lee, M. H., Lee, D. H., Lee, H. B., Lee, E. J., Baek, K., Kim, S., Kang, K. S. and Choi, J. W. (2023) Anti-apoptotic splicing variant of AIMP2 recover mutant SOD1-induced neuronal cell death. Mol. Neurobiol. 60, 145-159.
  41. Krishna, S. and Hervey-Jumper, S. L. (2022) Neural regulation of cancer: cancer-induced remodeling of the central nervous system. Adv. Biol. (Weinh.) 6, e2200047.
  42. Lee, B., Gyu Kim, D., Mi Kim, Y., Kim, S. and Choi, I. (2022) Discovery of benzodioxane analogues as lead candidates of AIMP2-DX2 inhibitors. Bioorg. Med. Chem. Lett. 73, 128889.
  43. Lee, B., Kim, D. G., Lee, A., Kim, Y. M., Cui, L., Kim, S. and Choi, I. (2023) Synthesis and discovery of the first potent proteolysis targeting chimaera (PROTAC) degrader of AIMP2-DX2 as a lung cancer drug. J. Enzyme Inhib. Med. Chem. 38, 51-66.
  44. Lee, M. H., Kang, S., Um, K. H., Lee, S. W., Hwang, H., Baek, K. and Choi, J. W. (2024a) Brain-targeted delivery of neuroprotective survival gene minimizing hematopoietic cell contamination: implications for Parkinson's disease treatment. J. Transl. Med. 22, 53.
  45. Lee, M. H., Um, K. H., Lee, S. W., Sun, Y. J., Gu, D. H., Jo, Y. O., Kim, S. H., Seol, W., Hwang, H., Baek, K. and Choi, J. W. (2024b) Bi-directional regulation of AIMP2 and its splice variant on PARP1-dependent neuronal cell death; therapeutic implication for Parkinson's disease. Acta Neuropathol. Commun. 12, 5.
  46. Lee, S. W., Cho, B. H., Park, S. G. and Kim, S. (2004) AminoacyltRNA synthetase complexes: beyond translation. J. Cell Sci. 117, 3725-3734.
  47. Lee, Y., Karuppagounder, S. S., Shin, J. H., Lee, Y. I., Ko, H. S., Swing, D., Jiang, H., Kang, S. U., Lee, B. D., Kang, H. C., Kim, D., Tessarollo, L., Dawson, V. L. and Dawson, T. M. (2013) Parthanatos mediates AIMP2-activated age-dependent dopaminergic neuronal loss. Nat. Neurosci. 16, 1392-1400.
  48. Lim, S., Cho, H. Y., Kim, D. G., Roh, Y., Son, S. Y., Mushtaq, A. U., Kim, M., Bhattarai, D., Sivaraman, A., Lee, Y., Lee, J., Yang, W. S., Kim, H. K., Kim, M. H., Lee, K., Jeon, Y. H. and Kim, S. (2020) Targeting the interaction of AIMP2-DX2 with HSP70 suppresses cancer development. Nat. Chem. Biol. 16, 31-41.
  49. Lindholm, D., Wootz, H. and Korhonen, L. (2006) ER stress and neurodegenerative diseases. Cell Death Differ. 13, 385-392.
  50. Liu, J., Chung, H. J., Vogt, M., Jin, Y., Malide, D., He, L., Dundr, M. and Levens, D. (2011) JTV1 co-activates FBP to induce USP29 transcription and stabilize p53 in response to oxidative stress. EMBO J. 30, 846-858.
  51. Long, H. Z., Cheng, Y., Zhou, Z. W., Luo, H. Y., Wen, D. D. and Gao, L. C. (2021) PI3K/AKT signal pathway: a target of natural products in the prevention and treatment of Alzheimer's disease and Parkinson's disease. Front. Pharmacol. 12, 648636.
  52. Maynard, S., Fang, E. F., Scheibye-Knudsen, M., Croteau, D. L. and Bohr, V. A. (2015) DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb. Perspect. Med. 5, a025130.
  53. McKinnon, P. J. (2009) DNA repair deficiency and neurological disease. Nat. Rev. Neurosci. 10, 100-112.
  54. Mohamed, W. A., Salama, R. M. and Schaalan, M. F. (2019) A pilot study on the effect of lactoferrin on Alzheimer's disease pathological sequelae: Impact of the p-Akt/PTEN pathway. Biomed. Pharmacother. 111, 714-723.
  55. Morrison, R. S., Kinoshita, Y., Johnson, M. D., Ghatan, S., Ho, J. T. and Garden, G. (2002) Neuronal survival and cell death signaling pathways. Adv. Exp. Med. Biol. 513, 41-86.
  56. Musicco, M., Adorni, F., Di Santo, S., Prinelli, F., Pettenati, C., Caltagirone, C., Palmer, K. and Russo, A. (2013) Inverse occurrence of cancer and Alzheimer disease: a population-based incidence study. Neurology 81, 322-328.
  57. Norat, P., Soldozy, S., Sokolowski, J. D., Gorick, C. M., Kumar, J. S., Chae, Y., Yagmurlu, K., Prada, F., Walker, M., Levitt, M. R., Price, R. J., Tvrdik, P. and Kalani, M. Y. S. (2020) Mitochondrial dysfunction in neurological disorders: exploring mitochondrial transplantation. NPJ Regen. Med. 5, 22.
  58. Offen, D., Elkon, H. and Melamed, E. (2000) Apoptosis as a general cell death pathway in neurodegenerative diseases. J. Neural Transm. Suppl. (58), 153-166.
  59. Oh, A. Y., Jung, Y. S., Kim, J., Lee, J. H., Cho, J. H., Chun, H. Y., Park, S., Park, H., Lim, S., Ha, N. C., Park, J. S., Park, C. S., Song, G. Y. and Park, B. J. (2016) Inhibiting DX2-p14/ARF interaction exerts antitumor effects in lung cancer and delays tumor progression. Cancer Res. 76, 4791-4804.
  60. Palomo, G. M. and Manfredi, G. (2015) Exploring new pathways of neurodegeneration in ALS: the role of mitochondria quality control. Brain Res. 1607, 36-46.
  61. Park, S. G., Choi, E. C. and Kim, S. (2010) Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs): a triad for cellular homeostasis. IUBMB Life 62, 296-302.
  62. Park, S. M., Kang, T. I. and So, J. S. (2021) Roles of XBP1s in transcriptional regulation of target genes. Biomedicines 9, 791.
  63. Pasinelli, P. and Brown, R. H. (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat. Rev. Neurosci. 7, 710-723.
  64. Pfisterer, U. and Khodosevich, K. (2017) Neuronal survival in the brain: neuron type-specific mechanisms. Cell Death Dis. 8, e2643.
  65. Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A. E. and Lang, A. E. (2017) Parkinson disease. Nat. Rev. Dis. Primers 3, 17013.
  66. Portt, L., Norman, G., Clapp, C., Greenwood, M. and Greenwood, M. T. (2011) Anti-apoptosis and cell survival: a review. Biochim. Biophys. Acta 1813, 238-259.
  67. Pott Godoy, M. C., Ferrari, C. C. and Pitossi, F. J. (2010) Nigral neurodegeneration triggered by striatal AdIL-1 administration can be exacerbated by systemic IL-1 expression. J. Neuroimmunol. 222, 29-39.
  68. Prillaman, M. (2024) How cancer hijacks the nervous system to grow and spread. Nature 626, 22-24.
  69. Qian, S., Wei, Z., Yang, W., Huang, J., Yang, Y. and Wang, J. (2022) The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol. 12, 985363.
  70. Seo, J. and Park, M. (2020) Molecular crosstalk between cancer and neurodegenerative diseases. Cell. Mol. Life Sci. 77, 2659-2680.
  71. Seranova, E., Connolly, K. J., Zatyka, M., Rosenstock, T. R., Barrett, T., Tuxworth, R. I. and Sarkar, S. (2017) Dysregulation of autophagy as a common mechanism in lysosomal storage diseases. Essays Biochem. 61, 733-749.
  72. Shang, S., Hua, F. and Hu, Z. W. (2017) The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8, 33972-33989.
  73. Shoulders, M. D., Ryno, L. M., Genereux, J. C., Moresco, J. J., Tu, P. G., Wu, C., Yates, J. R., 3rd, Su, A. I., Kelly, J. W. and Wiseman, R. L. (2013) Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 3, 1279-1292.
  74. Sweeney, P., Park, H., Baumann, M., Dunlop, J., Frydman, J., Kopito, R., McCampbell, A., Leblanc, G., Venkateswaran, A., Nurmi, A. and Hodgson, R. (2017) Protein misfolding in neurodegenerative diseases: implications and strategies. Transl. Neurodegener. 6, 6.
  75. Tapia, O., Riquelme, I., Leal, P., Sandoval, A., Aedo, S., Weber, H., Letelier, P., Bellolio, E., Villaseca, M., Garcia, P. and Roa, J. C. (2014) The PI3K/AKT/mTOR pathway is activated in gastric cancer with potential prognostic and predictive significance. Virchows Arch. 465, 25-33.
  76. van Es, M. A., Hardiman, O., Chio, A., Al-Chalabi, A., Pasterkamp, R. J., Veldink, J. H. and van den Berg, L. H. (2017) Amyotrophic lateral sclerosis. Lancet 390, 2084-2098.
  77. van Ziel, A. M. and Scheper, W. (2020) The UPR in neurodegenerative disease: not just an inside job. Biomolecules 10, 1090.
  78. Vidal, R. L., Sepulveda, D., Troncoso-Escudero, P., Garcia-Huerta, P., Gonzalez, C., Plate, L., Jerez, C., Canovas, J., Rivera, C. A., Castillo, V., Cisternas, M., Leal, S., Martinez, A., Grandjean, J., Sonia, D., Lashuel, H. A., Martin, A. J. M., Latapiat, V., Matus, S., Sardi, S. P., Wiseman, R. L. and Hetz, C. (2021) Enforced dimerization between XBP1s and ATF6f enhances the protective effects of the UPR in models of neurodegeneration. Mol. Ther. 29, 1862-1882.
  79. Volkert, M. R. and Crowley, D. J. (2020) Preventing neurodegeneration by controlling oxidative stress: the role of OXR1. Front. Neurosci. 14, 611904.
  80. Wong, R. S. (2011) Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30, 87.
  81. Yang, E. J., Jiang, J. H., Lee, S. M., Yang, S. C., Hwang, H. S., Lee, M. S. and Choi, S. M. (2010) Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. J. Neuroinflammation 7, 69.
  82. Yoon, H., Dehart, J. P., Murphy, J. M. and Lim, S. T. (2015) Understanding the roles of FAK in cancer: inhibitors, genetic models, and new insights. J. Histochem. Cytochem. 63, 114-128.
  83. Yun, S. P., Kim, H., Ham, S., Kwon, S. H., Lee, G. H., Shin, J. H., Lee, S. H., Ko, H. S. and Lee, Y. (2017) VPS35 regulates parkin substrate AIMP2 toxicity by facilitating lysosomal clearance of AIMP2. Cell Death Dis. 8, e2741.