DOI QR코드

DOI QR Code

Design, Screening and Development of Asymmetric siRNAs Targeting the MYC Oncogene in Triple-Negative Breast Cancer

  • Negesse Mekonnen (Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, College of Pharmacy) ;
  • Myeung-Ryun Seo (Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Graduate School of Convergence Science and Technology) ;
  • Hobin Yang (College of Pharmacy, Kyungsung University) ;
  • Chaithanya Chelakkot (Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, College of Pharmacy) ;
  • Jun Young Choi (R&D Center, ABION Inc.) ;
  • Sungyoul Hong (Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, College of Pharmacy) ;
  • Kyoung Song (College of Pharmacy, Duksung Women's University) ;
  • Young Kee Shin (Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, College of Pharmacy)
  • 투고 : 2024.05.04
  • 심사 : 2024.06.04
  • 발행 : 2025.01.01

초록

Triple-negative breast cancer (TNBC) is a subtype of breast cancer that lacks hormone receptor and Her2 (ERBB2) expression, leaving chemotherapy as the only treatment option. The urgent need for targeted therapy for TNBC patients has led to the investigation of small interfering RNAs (siRNAs), which can target genes in a sequence-specific manner, unlike other drugs. However, the clinical translation of siRNAs has been hindered by the lack of an effective delivery system, except in the case of liver diseases. The MYC oncogene is commonly overexpressed in TNBC compared to other breast cancer subtypes. In this study, we used siRNA to target MYC in MDA-MB-231, MDA-MB-157, MDA-MB-436 and Hs-578T cells. We designed various symmetric and asymmetric (asiRNAs), screened them for in vitro efficacy, modified them for enhanced nuclease resistance and reduced off-target effects, and conjugated them with cholesterol (ChoL) and docosanoic acid (DCA) as a delivery system. DCA was conjugated to the 3' end of asiRNA by a cleavable phosphodiester linker for in vivo delivery. Our findings demonstrated that asiRNA-VP and Mod_asiRNA10-6 efficiently downregulated MYC and its downstream targets, including RRM2, RAD51 and PARP1. Moreover, in a tumor xenograft model, asiRNA-VP-DCA effectively knocked down MYC mRNA and protein expression. Remarkably, durable knockdown persisted for at least 46 days postdosing in mouse tumor xenografts, with no visible signs of toxicity, underscoring the safety of DCA-conjugated asiRNAs. In conclusion, this study developed novel asiRNAs, design platforms, validated modification patterns, and in vivo delivery systems specifically targeting MYC in TNBC.

키워드

과제정보

Authors would like to thank Dr. Na Young Kim and Dr. Hong Seok Choi for their cooperation in the order, procurement and synthesis of asymmetric siRNA from abroad. Ms. Kang Young Im for procuring the reagents and materials used in this study. This research was funded by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2022R1A6A1A03046247) and ABION BIO.

참고문헌

  1. Adams, D., Gonzalez-Duarte, A., O'Riordan, W. D., Yang, C.-C., Ueda, M., Kristen, A. V., Tournev, I., Schmidt, H. H., Coelho, T., Berk, J. L., Lin, K.-P., Vita, G., Attarian, S., Planté-Bordeneuve, V., Mezei, M. M., Campistol, J. M., Buades, J., Brannagan, T. H., Kim, B. J., Oh, J., Parman, Y., Sekijima, Y., Hawkins, P. N., Solomon, S. D., Polydefkis, M., Dyck, P. J., Gandhi, P. J., Goyal, S., Chen, J., Strahs, A. L., Nochur, S. V., Sweetser, M. T., Garg, P. P., Vaishnaw, A. K., Gollob, J. A. and Suhr, O. B. (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11-21.
  2. Alshaer, W., Zureigat, H., Al Karaki, A., Al-Kadash, A., Gharaibeh, L., Hatmal, M. M., Aljabali, A. A. A. and Awidi, A. (2021) siRNA: mechanism of action, challenges, and therapeutic approaches. Eur. J. Pharmacol. 905, 174178.
  3. Amarzguioui, M. and Prydz, H. (2004) An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun. 316, 1050-1058.
  4. Biscans, A., Caiazzi, J., Davis, S., Mchugh, N., Sousa, J. and Khvorova, A. (2020a) The chemical structure and phosphorothioate content of hydrophobically modified siRNAs impact extrahepatic distribution and efficacy. Nucleic Acids Res. 48, 7665-7680.
  5. Biscans, A., Caiazzi, J., Mchugh, N., Hariharan, V., Muhuri, M. and KhvorovA, A. (2020b) Docosanoic acid conjugation to siRNA enables functional and safe delivery to skeletal and cardiac muscles. Mol. Ther. 29, 1382-1394.
  6. Brown, C. R., Gupta, S., Qin, J., Racie, T., He, G., Lentini, S., Malone, R., Yu, M., Matsuda, S., Shulga-Morskaya, S., Nair, A. V., Theile, C. S., Schmidt, K., Shahraz, A., Goel, V., Parmar, R. G., Zlatev, I., Schlegel, M. K., Nair, J. K., Jayaraman, M., Manoharan, M., Brown, D., Maier, M. A. and Jadhav, V. (2020) Investigating the pharmacodynamic durability of GalNAc-siRNA conjugates. Nucleic Acids Res. 48, 11827-11844.
  7. Chernikov, I. V., Ponomareva, U. A., Meschaninova, M. I., Bachkova, I. K., Teterina, A. A., Gladkikh, D. V., Savin, I. A., Vlassov, V. V., Zenkova, M. A. and Chernolovskaya, E. L. (2023) Cholesterol-conjugated supramolecular multimeric siRNAs: effect of siRNA length on accumulation and silencing in vitro and in vivo. Nucleic Acid Ther. 33, 361-373.
  8. CRDD (2021) Computational Resource for Drug Discovery. Available from: http://crdd.osdd.net/raghava/desirm/submitsirna.html/ [cited 2023 Dec 26].
  9. Crooke, S. T., VickeRS, T. A. and Liang, X. H. (2020) Phosphorothioate modified oligonucleotide-protein interactions. Nucleic Acids Res. 48, 5235-5253.
  10. Elkayam, E., Parmar, R., Brown, C. R., Willoughby, J. L., Theile, C. S., ManoharaN, M. and Joshua-Tor, L. (2016) siRNA carrying an (E)-vinylphosphonate moiety at the 5΄ end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2. Nucleic Acids Res. 45, 3528-3536.
  11. Foster, D. J., Brown, C. R., Shaikh, S., Trapp, C., Schlegel, M. K., Qian, K., Sehgal, A., Rajeev, K. G., Jadhav, V., Manoharan, M., Kuchimanchi, S., Maier, M. A. and Milstein, S. (2018) Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates. Mol. Ther. 26, 708-717.
  12. Friedrich, M. and Aigner, A. (2022) Therapeutic siRNA: state-of-the-art and future perspectives. BioDrugs 36, 549-571.
  13. Genescript (2021) Sequence Scramble. Available from: https://www.genscript.com/tools/create-scrambled-sequence/ [cited 2023 Dec 26].
  14. Hoadley, K. A., Yau, C., Hinoue, T., Wolf, D. M., Lazar, A. J., Drill, E., Shen, R., Taylor, A. M., Cherniack, A. D., Thorsson, V., Akbani, R., Bowlby, R., Wong, C. K., Wiznerowicz, M., Sanchez-Vega, F., Robertson, A. G., Schneider, B. G., Lawrence, M. S., Noushmehr, H., Malta, T. M.; Cancer Genome Atlas Network; Stuart, J. M., Benz, C. C. and Laird, P. W. (2018) Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173, 291-304.e6.
  15. Horiuchi, D., Kusdra, L., Huskey, N. E., Chandriani, S., Lenburg, M. E., Gonzalez-Angulo, A. M., Creasman, K. J., Bazarov, A. V., Smyth, J. W., Davis, S. E., Yaswen, P., Mills, G. B., Esserman, L. J. and Goga, A. (2012) MYC pathway activation in triple-negative breast cancer is synthetic lethal with CDK inhibition. J. Exp. Med. 209, 679-696.
  16. Hu, B., Zhong, L., Weng, Y., Peng, L., Huang, Y., Zhao, Y. and Liang, X.-J. (2020) Therapeutic siRNA: state of the art. Signal Transduct. Target. Ther. 5, 101.
  17. Jung, H. S., Rajasekaran, N., Song, S. Y., Kim, Y. D., Hong, S., Choi, H. J., Kim, Y. S., Choi, J. S., Choi, Y. L. and Shin, Y. K. (2015) Human papillomavirus E6/E7-specific siRNA potentiates the effect of radiotherapy for cervical cancer in vitro and in vivo. Int. J. Mol. Sci. 16, 12243-12260.
  18. Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
  19. Monaghan, C. E., Adamson, S. I., Kapur, M., Chuang, J. H. and Ackerman, S. L. (2021) The Clp1 R140H mutation alters tRNA metabolism and mRNA 3' processing in mouse models of pontocerebellar hypoplasia. Proc. Natl. Acad. Sci. U. S. A. 118, e2110730118.
  20. Naito, Y., Yamada, T., Ui-Tei, K., Morishita, S. and Saigo, K. (2004) siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res. 32, W124-W129.
  21. Naito, Y., Yoshimura, J., Morishita, S. and Ui-Tei, K. (2009) siDirect 2.0: updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics 10, 392.
  22. Orrantia-Borunda, E., Anchondo-Nuñez, P., Acuña-Aguilar, L. E., Gómez-Valles, F. O. and Ramírez-Valdespino, C. A. (2022) Subtypes of breast cancer. In Breast Cancer (H. N. Mayrovitz, Ed.), Chapter 3. Exon Publications, Brisbane. Available from: https://www.ncbi.nlm.nih.gov/books/NBK583808/
  23. Parmar, R., Willoughby, J. L. S., Liu, J., Foster, D. J., Brigham, B., Theile, C. S., Charisse, K., Akinc, A., Guidry, E., Pei, Y., Strapps, W., Cancilla, M., Stanton, M. G., Rajeev, K. G., Sepp-Lorenzino, L., Manoharan, M., Meyers, R., Maier, M. A. and Jadhav, V. (2016) 5'-(E)-vinylphosphonate: a stable phosphate mimic can improve the RNAi activity of siRNA–GalNAc conjugates. ChemBioChem 17, 985-989.
  24. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S. and Khvorova, A. (2004) Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326-330.
  25. Shen, W., De Hoyos, C. L., Sun, H., Vickers, T. A., Liang, X. H. and Crooke, S. T. (2018) Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res. 46, 2204-2217.
  26. TCGA (2018) Breast Invasive Carcinoma. TCGA, PanCancer Atlas. Available from: https://www.cbioportal.org/study/summary?id=brca_tcga_pan_can_atlas_2018/ [cited 2024 Feb 06].
  27. Ui-Tei, K., Naito, Y., Takahashi, F., Haraguchi, T., Ohki-Hamazaki, H., Juni, A., Ueda, R. and Saigo, K. (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32, 936-48.
  28. Yin, L., Duan, J. J., Bian, X. W. and Yu, S. C. (2020) Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 22, 61.
  29. Yuan, Z., Wu, X., Liu, C., Xu, G. and Wu, Z. (2012) Asymmetric siRNA: new strategy to improve specificity and reduce off-target gene expression. Hum. Gene Ther. 23, 521-532.