과제정보
This was supported by Korea National University of Transportation Industry-Academy Cooperation Foundation in 2023.
참고문헌
- D. Chae, Global existence of solutions to the coupled Einstein and Maxwell-Higgs system in the spherical symmetry, Ann. Henri Poincaré 4 (2003), no. 1, 35–62. https://doi.org/10.1007/s00023-003-0121-0
- D. Chae, On the multi-string solutions of the self-dual static Einstein-Maxwell-Higgs system, Calc. Var. Partial Differential Equations 20 (2004), no. 1, 47–63. https://doi.org/10.1007/s00526-003-0227-8
- H. Chan, C.-C. Fu, and C.-S. Lin, Non-topological multi-vortex solutions to the self dual Chern-Simons-Higgs equation, Comm. Math. Phys. 231 (2002), no. 2, 189–221. https://doi.org/10.1007/s00220-002-0691-6
- X. Chen, S. Hastings, J. B. McLeod, and Y. Yang, A nonlinear elliptic equation arising from gauge field theory and cosmology, Proc. Roy. Soc. London Ser. A 446 (1994), no. 1928, 453–478. https://doi.org/10.1098/rspa.1994.0115
- J.-L. Chern and S.-G. Yang, Evaluating solutions on an elliptic problem in a gravitational gauge field theory, J. Funct. Anal. 265 (2013), no. 7, 1240–1263. https://doi.org/10.1016/j.jfa.2013.05.041
- K. Choe, J. Han, C.-S. Lin, and T.-C. Lin, Uniqueness and solution structure of nonlinear equations arising from the Chern-Simons gauged O(3) sigma models, J. Differential Equations 255 (2013), no. 8, 2136–2166. https://doi.org/10.1016/j.jde.2013.06.010
- N. Choi and J. Han, Classification of solutions of elliptic equations arising from a gravitational O(3) gauge field model, J. Differential Equations 264 (2018), no. 8, 4944–4988. https://doi.org/10.1016/j.jde.2017.12.030
- A. Comtet and G. W. Gibbons, Bogomol'nyi bounds for cosmic strings, Nuclear Phys. B 299 (1988), no. 4, 719–733. https://doi.org/10.1016/0550-3213(88)90370-7
- J. Han, Existence of topological multivortex solutions in the self-dual gauge theories, Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), no. 6, 1293–1309. https://doi.org/10.1017/S030821050000069X
- J. Han, Y. Lee, and J. Sohn, Existence of nontopological solutions of the self-dual Einstein-Maxwell-Higgs equations on compact surfaces, Calc. Var. Partial Differential Equations 60 (2021), no. 3, Paper No. 94, 24 pp. https://doi.org/10.1007/s00526-021-01952-4
- J. Han and J. Sohn, Existence of topological multi-string solutions in Abelian gauge field theories, J. Math. Phys. 58 (2017), no. 11, 111511, 17 pp. https://doi.org/10.1063/1.4997983
- J. Han and J. Sohn, Classification of string solutions for the self-dual Einstein-Maxwell Higgs model, Ann. Henri Poincaré 20 (2019), no. 5, 1699–1751. https://doi.org/10.1007/s00023-019-00788-1
- M. B. Hindmarsh and T. W. B. Kibble, Cosmic strings, Rep. Progr. Phys. 58 (1995), no. 5, 477–562. http://stacks.iop.org/0034-4885/58/477
- B. J. Schroers, Bogomol'nyi solitons in a gauged O(3) sigma model, Phys. Lett. B 356 (1995), no. 2-3, 291–296. https://doi.org/10.1016/0370-2693(95)00833-7
- B. J. Schroers, The spectrum of Bogomol'nyi solitons in gauged linear sigma models, Nuclear Phys. B 475 (1996), no. 1-2, 440–468. https://doi.org/10.1016/0550-3213(96)00348-3
- J. Spruck and Y. S. Yang, Regular stationary solutions of the cylindrically symmetric Einstein-matter-gauge equations, J. Math. Anal. Appl. 195 (1995), no. 1, 160–190. https://doi.org/10.1006/jmaa.1995.1349
- C. H. Taubes, Arbitrary N-vortex solutions to the first order Ginzburg Landau equations, Comm. Math. Phys. 72 (1980), no. 3, 277–292. http://projecteuclid.org/euclid.cmp/1103907703 103907703
- Y. Yang, Prescribing topological defects for the coupled Einstein and abelian Higgs equations, Comm. Math. Phys. 170 (1995), no. 3, 541–582. http://projecteuclid.org/euclid.cmp/1104273252 104273252
- Y. Yang, Coexistence of vortices and antivortices in an abelian gauge theory, Phys. Rev. Lett. 80 (1998), no. 1, 26–29. https://doi.org/10.1103/PhysRevLett.80.26
- Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer, New York, 2001. https://doi.org/10.1007/978-1-4757-6548-9
- Y. Yang, Prescribing zeros and poles on a compact Riemann surface for a grauitationally coupled abelian gauge field theory, Comm. Math. Phys. 249 (2004), no. 3, 579-609. https://doi.org/10.1007/s00220-004-1119-2