DOI QR코드

DOI QR Code

Translationally Controlled Tumor Protein Enhances Angiogenesis in Ovarian Tumors by Activating Vascular Endothelial Growth Factor Receptor 2 Signaling

  • Seung Bae Rho (Division of Cancer Biology, Research Institute, National Cancer Center) ;
  • Boh-Ram Kim (College of Pharmacy, Dongguk University) ;
  • Seung-Hoon Lee (Department of Life Science, Yong In University) ;
  • Chang Hoon Lee (College of Pharmacy, Dongguk University)
  • Received : 2024.10.30
  • Accepted : 2024.11.25
  • Published : 2025.01.01

Abstract

Translationally controlled tumor protein (TCTP) is a regulatory protein that plays pivotal roles in cellular processes including the cell cycle, apoptosis, microtubule stabilization, embryo development, stress responses, and cancer. However, the molecular mechanism by which it promotes tumor angiogenesis is still unclear. In this study, we explored the mechanisms underlying stimulation of angiogenesis by a novel TCTP. Recombinant TCTP enhanced vascular endothelial growth factor (VEGF)-induced endothelial cell migration, capillary-like tubular structure formation, and cell proliferation by interacting with VEGF receptor 2 (VEGFR-2) in vitro. In contrast, we showed that TCTP knockdown (using short interfering [si]TCTP) led to a decrease in ovarian tumor cells. We also examined the expression of VEGF and hypoxia inducible factor 1 (HIF-1α), an important angiogenic factor. The expression of VEGF as well as HIF-1α was dramatically decreased by siTCTP. Mechanistically, siTCTP inhibited VEGFR-2 tyrosine phosphorylation and phosphorylation of its downstream targets PI3K, Akt, and mTOR. Collectively, these findings indicate that TCTP can promote proliferation and angiogenesis via the VEGFR-2/PI3K and mTOR signaling pathways in ovarian tumor cells, providing new insight into the mechanism behind the involvement of TCTP in tumor angiogenesis.

Keywords

Acknowledgement

This work was supported by a grant from the National Cancer Center, Korea (NCC-2210450-2 and 2310590-1) and the Basic Science Research Program through the NRF (NRF-2020R1A2C3004973, NRF-2018R1A5A2023127).

References

  1. Acunzo, J., Baylot, V., So, A. and Rocchi, P. (2014) TCTP as therapeutic target in cancers. Cancer Treat. Rev. 40, 760-769.
  2. AI-Alem, L. and Curry, T. E., Jr. (2015) Ovarian cancer: involvement of the matrix metalloproteinases. Reproduction 150, R55-R64.
  3. Amson, R., Pece, S., Lespagnol, A., Vyas, R., Mazzarol, G., Tosoni, D., Colaluca, I., Viale, G., Rodrigue S-Ferreira, S., Wynendaele, J., Chaloin, O., Hoebeke, J., Marine, J. C., Di Fiore, P. P. and Telerman, A. (2011) Reciprocal repression between P53 and TCTP. Nat. Med. 18, 91-99.
  4. Amzallag, N., Passer, B. J., Allanic, D., Segura, E., Thery, C., Goud, B., Amson, R. and Telerman, A. (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J. Biol. Chem. 279, 46104-46112.
  5. Bae, S. Y., Kim, H. J., Lee, K. J. and Lee, K. (2015) Translationally controlled tumor protein induces epithelial to mesenchymal transition and promotes cell migration, invasion and metastasis. Sci. Rep. 5, 8061.
  6. Bohm, H., Benndorf, R., Gaestel, M., Gross, B., Nurnberg, P., Kraft, R., Otto, A. and Bielka, H. (1989) The growth-related protein P23 of the Ehrlich ascites tumor: translational control, cloning and primary structure. Biochem. Int. 19, 277-286.
  7. Bommer U. A. and Thiele, B. J. (2004) The translationally controlled tumour protein (TCTP). Int. J. Biochem. Cell Biol. 36, 379-385.
  8. Chen, C., Deng, Y., Hua, M., Xi, Q., Liu, R., Yang, S., Liu, J., Zhong, J., Tang, M., Lu, S., Zhang, Z., Min, X., Tang, C. and Wang, Y. (2015a) Expression and clinical role of TCTP in epithelial ovarian cancer. J. Mol. Histol. 46, 145-156.
  9. Chen, C. K., Yu, W. H., Cheng, T. Y., Chen, M. W., Su, C. Y., Yang, Y. C., Kuo, T. C., Lin, M. T., Huang, Y. C., Hsiao, M., Hua, K. T., Hung, M. C. and Kuo, M. L. (2016) Inhibition of VEGF165/VEGFR2-dependent signaling by LECT2 suppresses hepatocellular carcinoma angiogenesis. Sci. Rep. 6, 31398.
  10. Chen, H. M., Tsai, C. H. and Hung, W. C. (2015b) Foretinib inhibits angiogenesis, lymphangiogenesis and tumor growth of pancreatic cancer in ViVO by decreasing VEGFR-2/3 and TIE-2 signaling. On-cotarget 6, 14940-14952.
  11. Chen, S. H., Wu, P. S., Chou, C. H., Yan, Y. T., Liu, H., Weng, S. Y. and Yang-Yen, H. F. (2007) A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue-or cell type-specific manner. Mol. Biol. Cell 18, 2525-2532.
  12. Downward, J. (1995) Signal transduction. A target for PI(3) kinase. Nature 376, 553-554.
  13. Elson, D. A., Ryan, H. E., Snow, J. W., Johnson, R. and Arbeit, J. M. (2000) Coordinate up-regulation of hypoxiainducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res. 60, 6189-6195.
  14. Ferrara, N. and Kerbel, R. S. (2005) Angiogenesis as a therapeutic target. Nature 438, 967-974.
  15. Folkman, J. (1995) Angiogenesis inhibitors generated by tumors. Mol. Med. 1, 120-122.
  16. Fresno Vara, J. A., Casado, E., de Castro, J., Cejas, P., Belda-lniesta, C. and Gonzalez-Baron, M. (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 30, 193-204.
  17. Geiger, T. R. and Peeper, D. S. (2009) Metastasis mechanisms. Biochim. Biophys. Acta 1796, 293-308.
  18. Gu, X., Yao, L., Ma, G., Cui, L., Li, Y., Liang, W., Zhao, B. and Li, K. (2014) TCTP promotes glioma cell proliferation in vitro and in VIVO via enhanced beta-catenin/TCF-4 transcription. Neuro Oncol. 16, 217-227.
  19. Guertin, D. A. and Sabatini, D. M. (2005) An expanding role for mTOR in cancer. Trends Mol. Med. 11, 353-361.
  20. Hadler-Olsen, E., Winberg, J. O. and Uhlin-Hansen, L. (2013) Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol. 34, 2041-2051.
  21. Hanahan, D. and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353-364.
  22. Hennessy, B. T., Smith, D. L., Ram, P. T., Lu, Y. and Mills, G. B. (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 4, 988-1004.
  23. Hicklin, D. J. and Ellis, L. M. (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23, 1011-1027.
  24. Hoeben, A., Landuyt, B., Highley, M. S., Wildiers, H., Van Oosterom, A. T. and De Bruijn, E. A. (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol. Rev. 56, 549-580.
  25. Jin, H., Zhang, X., Su, J., Teng, Y., Ren, H. and Yang, L. (2015) RNA interference-mediated knockdown of translationally controlled tumor protein induces apoptosis, and inhibits growth and invasion in glioma cells. Mol. Med. Rep. 12, 6617-6625.
  26. Jung, J., Kim, H. Y., Kim, M., Sohn, K., Kim, M. and Lee, K. (2011) Translationally controlled tumor protein induces human breast epithelial cell transformation through the activation of Src. Oncogene 30, 2264-2274.
  27. Jung, J., Kim, M., Kim, M. J., Kim, J., Moon, J., Lim, J. S., Kim, M. and Lee, K. (2004) Translationally controlled tumor protein interacts with the third cytoplasmic domain of Na, K-ATPase alpha subunit and inhibits the pump activity in HeLa cells. J. Biol. Chem. 279, 49868-49875.
  28. Kearney, J. B., Ambler, C. A., Monaco, K. A., Johnson, N., Rapoport, R. G. and Bautch, V. L. (2002) Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood 99, 2397-2407.
  29. Kessenbrock, K., Plaks, V. and Werb, Z. (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52-67.
  30. Khwaja, A. (1999) Akt is more than just a Bad kinase. Nature 401, 33-34.
  31. Kim, B. R., Lee, S. H., Park, M. S., Seo, S. H., Park, Y. M., Kwon, Y. J. and Rho, S. B. (2016) MARCKSL1 exhibits anti-angiogenic effects through suppression of VEGFR-2-dependent Akt/PDK-1/mTOR phosphorylation. Oncol. Rep. 35, 1041-1048.
  32. Kim, B. R., Seo, S. H., Park, M. S., Lee, S. H., Kwon, Y. and Rho, S. B. (2015) sMEK1 inhibits endothelial cell proliferation by attenuating VEGFR-2-dependent-Akt/eNOSHIF-1alpha signaling path-ways. Oncotarget 6, 31830-31843.
  33. Kumaran, G. C., Jayson, G. C. and Clamp, A. R. (2009) Antiangiogenic drugs in ovarian cancer. Br. J. Cancer 100, 1-7.
  34. Lamar, J. M., Pumiglia, K. M. and Di Persio, C. M. (2008) An immortalization-dependent switch in integrin function up-regulates MMP-9 to enhance tumor cell invasion. Cancer Res. 68, 7371-7379.
  35. Langdon, J. M., Vonakis, B. M. and MacDonald, S. M. (2004) ldentification of the interaction between the human recombinant histamine releasing factor/translationally controlled tumor protein and elongation factor-1delta (also knownase Elongation factor-1Bbeta). Biochim. Biophys. Acta 1688, 232-236.
  36. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. and Fer-rara, N. (1989) Vascular endothelial growth factor is a secretedan-giogenic mitogen. Science 246, 1306-1309.
  37. Li, F., Zhang, D. and Fujise, K. (2001) Characterization of fortilin, a novel antiapoptotic protein. J. Biol. Chem. 276, 47542-47549.
  38. Li, Y., Dou, Y., Da Veiga Leprevost, F., Geffen, Y., Calinawan, A. P., Aguet, F., Akiyama, Y., Anand, S., Birger, C., Cao, S., Chaudhary, R., Chilappagari, P., Cieslik, M., Colaprico, A., Zhou, D. C., Day, C., Domagalski, M. J., Esai Selvan, M., Fenyo, D., Foltz, S. M., Francis, A., Gonzalez-Robles, T., Gumus, Z. H., Heiman, D., Holck, M., Hong, R., Hu, Y., Jaehnig, E. J. Ji, J., Jiang, W., Katsnelson, L., Ketchum, K. A., Klein, R. J., Lei, J. T., Liang, W. W., Liao, Y., Lind-gren, C. M., Ma, W., Ma, L., MacCoss, M. J., Martins Rodrigues, F., McKerrow, W., Nguyen, N., Oldroyd, R., Pilozzi, A., Pugliese, P., Reva, B., Rudnick, P., Ruggles, K.V., Rykunov, D., Savage,S.R., Schnaubelt, M., Schraink, T., Shi,Z., Singhal, D., Song, X., Storrs, E., Terekhanova, N. V., Thangudu, R. R., Thiagarajan, M., Wang, L. B., Wang, J. M., Wang, Y., Wen, B., Wu, Y., Wyczalkowski, M. A., Xin, Y., Yao, L., Yi, X., Zhang, H., Zhang, Q., Zuhl, M., Getz, G., Ding, L., Nesvizhskii, A. I., Wang, P., Robles, A. I., Zhang, B. and Payne, S. H.; Clinical Proteomic Tumor Analysis Consortium (2023) Proteogenomic data and resources for pan-cancer analysis. Cancer Cell 41, 1397-1406.
  39. Liu, H., Peng, H. W., Cheng, Y. S., Yuan, H. S. and Yang-Yen, H. F. (2005) Stabilization and enhancement of the antiapoptotic activity of mcl-1 by TCTP Mol. Cell. Biol. 25, 3117-3126.
  40. Lucibello, M., Gambacurta, A., Zonfrillo, M., Pierimarchi, P., Serafino, A., Rasi, G., Rubartelli, A. and Garaci, E. (2011) TCTP is a critical survival factor that protects cancer cells from oxidative stress-induced cell-death. Exp. Cell Res. 317, 2479-2489.
  41. MacDonald, S. M., Rafnar, T., Langdon, J. and Lichtenstein, L. M. (1995) Molecular identification of an lgE-dependent histamine-releasing factor. Science 269, 688-690.
  42. Nagano-lto, M. and Ichikawa, S. (2012) Biological effects of Mammalian translationally controlled tumor protein (TCTP) on cell death, proliferation, and tumorigenesis. Biochem. Res. Int. 2012, 204960.
  43. Nagasaki, T., Hara, M., Nakanishi, H., Takahashi, H., Sato, M. and Takeyama, H. (2014) Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br. J. Cancer 110, 469-478.
  44. Nigg, E. A. (1995) Cyelin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 17, 471-480.
  45. Olsson, A. K., Dimberg, A., Kreuger, J. and Claesson-Welsh, L. (2006) VEGF receptor signalling-in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359-371.
  46. Page-McCaw, A., Ewald, A. J. and Werb, Z. (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 8, 221-233.
  47. Plate, K. H., Breier, G., Weich, H. A. and Risau, W. (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in ViVO. Nature 359, 845-848.
  48. Poveshchenko, A. F. and Konenkov, V. I. (2010) Mechanisms and factors of angiogenesis. Usp. Fiziol. Nauk 41, 68-89.
  49. Rho, S. B., Byun, H. J., Kim, B. R. and Lee, C. H. (2023a) Liver kinase B1 mediates its anti-tumor function by binding to the N-terminus of malic enzyme 3. Biomol. Ther. (Seoul) 31, 330-339.
  50. Rho, S. B., Byun, H. J., Kim, B. R. and Lee, C. H. (2023b) LKB1/STK11 tumor suppressor reduces angiogenesis by directly interacting with VEGFR2 in tumorigenesis. Biomol. Ther. (Seoul) 31, 456-465.
  51. Rho, S. B., Lee, J. H., Park, M. S., Byun, H. J., Kang, S., Seo, S. S., Kim, J. Y. and Park, S. Y. (2011) Anti-apoptotic protein TCTP controls the stability of the tumor suppressor p53. FEBS Lett. 585, 29-35.
  52. Rho, S. B., Lee, K. H., Kim, J. W., Shiba, K., Jo, Y. J. and Kim, S. (1996) Interaction between human tRNA synthetases involves repeated sequence elements. Proc. Natl. Acad. Sci. U.S.A. 93, 10128-10133.
  53. Riabov, V., Gudima, A., Wang, N., Mickley, A., Orekhov, A. and Kzhyshkowska, J. (2014) Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front. Physiol. 5, 75.
  54. Ruf, W., Yokota, N. and Schaffner, F. (2010) Tissue factor in cancer progression and angiogenesis. Thromb. Res. 125 Suppl 2, S36-S38.
  55. Saharinen, P., Eklund, L., Pulkki, K., Bono, P. and Alitalo, K. (2011) VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol. Med. 17, 347-362.
  56. Sarvaiya, P. J., Guo, D., Ulasov, I., Gabikian, P. and Lesniak, M. S. (2013) Chemokines in tumor progression and metastasis. Oncotarget 4, 2171-2185.
  57. Schropfer, A., Kammerer, U., Kapp, M., Dietl, J., Feix, S. and Anacker, J. (2010) Expression pattern of matrix metalloproteinases in human gynecological cancer cell lines. BMC Cancer 10, 553.
  58. Seo, E. J. and Efferth, T. (2016) Interaction of antihistaminic drugs with human translationally controlled tumor protein (TCTP) as novel approach for differentiation therapy. Oncotarget 7, 16818-16839.
  59. Simons, M. (2012) An inside view: VEGF receptor trafficking and signaling. Physiology (Bethesda) 27, 213-222.
  60. Stamenkovic, I. (2003) Extracellular matrix remodelling: the role of matrix metalloproteinases. J. Pathol. 200, 448-464.
  61. Takahashi, T., Yamaguchi, S., Chida, K. and Shibuya, M. (2001) A single autophosphorylation site on KDR/FIK-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J. 20, 2768-2778.
  62. Telerman, A. and Amson, R. (2009) The molecular programme of tumour reversion: the steps beyond malignant transformation. Nat. Rev. Cancer 9, 206-216.
  63. Thomas, G., Thomas, G. and Luther, H. (1981) Transcriptional and translational control of cytoplasmic proteins after serum stimulation of quiescent Swiss 3T3 cells. Proc. Natl. Acad. Sci. U.S.A. 78, 5712-5716.
  64. Tsarova, K., Yarmola, E. G. and Bubb, M. R. (2010) Identification of a cofilin-like actin-binding site on translationally controlled tumor protein (TCTP). FEBS Lett. 584, 4756-4760.
  65. Tuynder M., Susini, L. Prieur, S., Besse, S., Fiucci, G., Amson, R. and Telerman, A. (2002) Biological models and genes of tumor reversion: cellular reprogramming through tpt1/TCTP and SIAH-1. Proc. Natl. Acad. Sci. U.S.A. 99, 14976-14981.
  66. Vihinen, P. and Kahari, V. M. (2002) Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int. J. Cancer 99, 157-166.
  67. Watanabe, K., Hasegawa, Y., Yamashita, H., Shimizu, K., Ding, Y., Abe, M., Ohta, H., Imagawa, K., Hojo, K., Maki, H., Sonoda, H. and Sato, Y. (2004) Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. J. Clin. Invest. 114, 898-907.
  68. West, K. A., Castillo, S. S. and Dennis, P. A. (2002) Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist. Updat. 5, 234-248.
  69. Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., ltzykson, R. A., Come, C., Savagner, P., Gitelman, I., Richardson, A. and Weinberg, R. A. (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927-939.
  70. Yang, J., Mani, S. A. and Weinberg, R. A. (2006) Exploring a new twist on tumor metastasis. Cancer Res. 66, 4549-4552.
  71. Yang, Y., Yang, F., Xiong, Z., Yan, Y., Wang, X., Nishino, M., Mirkovic, D., Nguyen, J., Wang, H. and Yang, X. F. (2005) An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24, 4778-4788.
  72. Yenofsky, R., Bergmann, I. and Brawerman, G. (1982) Messenger RNA species partially in a repressed state in mouse sarcoma ascites cells. Proc. Natl. Acad. Sci. U.S.A. 79, 5876-5880.
  73. Yoon, T., Jung, J., Kim, M., Lee, K. M., Choi, E. C. and Lee, K. (2000) Identification of the self-interaction of rat TCTP/lgE-dependent histamine-releasing factor using yeast two-hybrid system. Arch. Biochem. Biophys. 384, 379-382.
  74. Zhang, Z., Neiva, K. G., Lingen, M. W., Ellis, L. M. and Nor, J. E. (2010) VEGF-dependent tumor angiogenesis requires inverse and reciprocal regulation of VEGFR1 and VEGFR2. Cell Death Differ. 17, 499-512.
  75. Zhou, D., Jang, J. M., Yang, G., Ha, H. C., Fu, Z. and Kim, D. K. (2023) A novel role of hyaluronic acid and proteoglycan link protein 1 (HAPLN1) in delaying vascular endothelial cell senescence. Biomol. Ther. (Seoul) 31, 629-639.