DOI QR코드

DOI QR Code

Real-time Synchronization of Activity Simulation Based on Construction Duration Proportionality

  • Received : 2024.08.09
  • Accepted : 2024.10.27
  • Published : 2025.03.31

Abstract

In a 4D CAD system, the 3D representation of the completeness of each activity is usually expressed based on a specific date, such as the finish date of the activity, with the activity described in only two forms: completed or uncompleted. In such a representation, the completion of the activity is not visible at the beginning of the construction period, and the entire completion is displayed at once at the finish time. In other words, there is a gap between the completion status of the simulated activity according to the planned construction period and the completion status according to the actual construction period. In particular, the representation of vertically high structures such as bridge piers and horizontally long structures such as tunnels and earthworks is more different from the actual progress status. To address these issues, this study develops a methodology based on the morphing technique, which proportionally simulates the completed state of an activity over the construction progress. The methodology is then implemented to verify its applicability in real-world projects. To this end, the central axis of the axial direction for each 3D model is determined. A methodology and corresponding function are then developed to simulate completion along the central axis in proportion to the construction progress. In this way, the completion of the activity is expressed proportionally by date according to the construction period, so the activities with a long construction period can be simulated similarly to the actual progress of the activity by date on the construction site.

4D 시뮬레이션에서 개별 공정별 3D 형태의 완성도 표현은 해당 공정의 공사 종료일과 같은 특정일을 기준으로 표현되고, 해당 공정의 완성 상태 또는 미착공 상태의 두 가지 형태로만 표현된다. 이러한 표현 방식에서는 공사 기간 초기에는 공정의 완성되는 모습이 보이지 않고 종료 시점에 전체 완성도가 일시에 나타나게 된다. 즉, 계획 공사 기간에 따라 시뮬레이션되는 공정의 완성도 모습과 실제 공사 기간에 따른 완성도 모습이 차이가 나는 괴리감을 갖게 된다. 특히 교각과 같이 수직 방향으로 높은 구조물과 토공 및 터널과 같이 수평 방향으로 길게 시공되는 구조물의 표현은 실제 공정 모습과 더욱 차이가 나게 된다. 본 연구에서는 이러한 점을 개선하기 위해 공정의 완성 모습을 공사 기간에 따라 비례적으로 시뮬레이션하는 몰핑기법에 근거한 방법론을 구현한 후 시스템으로 구성하여 실제 프로젝트에서 적용성을 검증한다. 이를 위해 개별 3D모델이 시공되는 축 방향의 중심축을 구한 후에, 중심축을 따라서 완성도가 공사 기간에 비례하여 시뮬레이션 되는 방법을 활용하였다. 이러한 방식은 공사 기간에 따라 공정의 완성도가 일자별로 비례적으로 표현되므로, 공사 기간이 긴 공정은 실제 현장의 일자별 공정 진도 모습과 유사한 시뮬레이션이 가능하게 된다.

Keywords

References

  1. Boton, C., S. Kubicki and G. Halin (2015), "The Challenge of Level of Development in 4D/BIM Simulation Across AEC Project Lifecycle: A Case Study", Procedia Engineering, 123: 59~67.
  2. Boton, C. , L. Rivest, S. Kubicki and O. Ghnaya (2022), "4D Simulation Research in Construction: A Systematic Mapping Study", Archives of Computational Methods in Engineering, 30: 2451~2472.
  3. Gartoumi, K. I., S. Zaki and M. Aboussaleh (2023), "Building Information Modelling (BIM) Interoperability for Architecture and Engineering (AE) of the Structural Project: A Case Study", Materials Today: Proceedings.
  4. Heesom, D., L. Mahdjoubi and D. Proverbs (2012), "A Dynamic VR System For Visualizing Construction Space Usage", Construction Research Congress: Winds of Change: Integration and Innovation, 997~1004.
  5. Mahalingam, A. , R. Kashyap and C. Mahajan (2010), "An Evaluation of the Applicability of 4D CAD on Construction Projects", Automation in Construction, 19(2): 148~159.
  6. Messi, L., B. G. Soto, A. Carbonari and B. Naticchia (2022), "Intelligent BIM-based Spatial Conflict Simulators: A Comparison with Commercial 4D Tools", 39th International Symposium on Automation and Robotics in Construction (ISARC 2022), Bogota, Colombia, 550~557.
  7. Nechyporchuk, Y. and R. Baskova (2020), "The Conformity of the Tools of Selected Software Programs for 4D Building Modeling", IOP Conf. Series: Materials Science and Engineering, 867: 012034
  8. Nechyporchuk, Y. and R. Baskova (2021), "The Level of Detail for 4D BIM Modeling", IOP Conference Series: Materials Science and Engineering, 1209: 012002.
  9. Salhab, D., F. Alsakka, and F. Hamzeh (2023), "A Narrative Review of Workspace Planning in Construction: Challenges and Insights", Proceedings of the 31st Annual Conference of the International Group for Lean Construction (IGLC31), Lille, France, 1208~1219.
  10. Traore, M., G. Zhao and X. Zhou (2023), "Simulation of the Construction of a Swivel Bridge Using BIM 4D", Open Journal of Civil Engineering, 13(1): 139~154, doi: 10.4236/ojce.2023.131010.
  11. Tulke, J., M. Nour and K. Beucke (2008), "A Dynamic Framework for Construction Scheduling based on BIM using IFC", IABSE Congress Report, 17(22): 158~159.
  12. Chayo (2014, May 21), Geometric Processing, Chayo's Small Shelter, https://blog.naver.com/childcat/220006853356. (in Korean)
  13. Elgohari, T. (2015, Sep 10), "General Comparison between BIM 4D Software", Linked in, https://www.linkedin.com/pulse/general-comparison-between-bim-4d-software-tamer-mohammed.
  14. Kamvysselis, M. , M. D. Blum, H. Vassef and K. Gajos, "3D Morphing: 6.837 Final Project Proposal", MIT Computer Graphics Group, Accessed March 20, 2024. http://web.mit.edu/manoli/morph/www/morph.html.