DOI QR코드

DOI QR Code

Amounts of Road-Deposited Sediments and Heavy Metals Contents for Different Antecedent Dry Days and Distance from a Rotary: Potential of Non-point Source Pollution Control

선행건기일수와 환상 교차로에서의 위치에 따른 도로퇴적물 축적량 및 중금속 함량: 비점오염 저감 활용 가능성

  • 김도군 (국립순천대학교 환경공학과 ) ;
  • 박상숙 (국립순천대학교 환경공학과)
  • Received : 2024.07.23
  • Accepted : 2024.09.04
  • Published : 2025.03.31

Abstract

This study collected road-deposited sediments (RDS) at curved and straight sections on a motorway in a downtown area under varying antecedent dry days (ADD) conditions. The amounts and the contents of metals of the RDS were analyzed to investigate the effects of ADD and driving patterns on them. The quantity of RDS increased with increasing ADD regardless of section. It was more severe at the curve and reached 1136.9 g/m2 at an ADD of 35 days, 3.9 times that of straight sections. The contents of metals, enrichment factors (EF), and single pollution indices (PI) were highly variable and did not correlate with ADD or section. The contents of Al and Fe were as high as 72.5~107762.2 mg/kg, and those of Cr, Cu, Mn, Ni, and Zn were 162.4~4082.3 mg/kg. They were higher for larger particles (75~2,000 ㎛) than smaller ones. The EFs and PIs of Cr, Cu, Ni, Pb, and Zn were 40.9 and 122.6 at their maximum, respectively. The contents of Cr, Fe, Mn, Ni, Pb, and Zn showed strong correlations with each other in 75~2,000 ㎛ RDS, indicating that they originated from vehicles, i.e., tires, brakes, oils, fuels, and roads. However, those in <75 ㎛ RDS did not show substantial correlations. The results of this study suggest that the RDS is seriously polluted with metals. However, these also suggest a vital opportunity to decrease nonpoint source pollution via RDS removal.

본 연구에서는 도심지역의 회전구간과 직선구간에서 선행건기일수(antecedent dry days, ADD)에 따라 도로퇴적물(road deposited sediments, RDS)을 채취하여, ADD와 차량의 운행 특성에 따른 RDS 축적량과 금속 함량을 분석하였다. 전 구간에서 RDS 축적량은 ADD 증가에 따라 증가하였는데, 직선구간에 비해 회전구간에서의 증가폭이 더욱 컸다. ADD 35 day에서 회전구간에서의 축적량은 1136.9g/m2으로, 직선구간의 3.9배로 나타났다. RDS의 금속 함량, 농축계수(enrichment factors, EF), 그리고 단일오염지수(single pollution indices, PI)는 그 범위가 매우 넓었으며, ADD 또는 도로 위치와 상관관계를 나타내지 않았다. RDS의 Al과 Fe 함량은 172.5~107762.2mg/kg으로 Cr, Cu, Mn, Ni, 그리고 Zn(162.4~4082.3mg/kg)에 비해 높았으며, 이들은 큰 입자에서(75~2,000㎛) 더 높았다. Cr, Cu, Ni, Pb, 그리고 Zn의 EF와 PI 값은 각각 최대 40.9와 122.6이었다. 75~2,000㎛ RDS의 Cr, Fe, Mn, Ni, Pb, 그리고 Zn 함량은 상호 상관관계가 높아, 그 발생원이 타이어, 도로, 브레이크, 오일, 연료 등임을 나타내었다. 그러나, <75㎛ RDS의 금속 함량은 상관관계가 낮았다. 본 연구 결과는 대상지역의 RDS는 금속류에 심각하게 오염되어 있음을 나타낸다. 그러나, 이는 또한, RDS 제거의 의해 비점오염을 크게 저감할 수 있음을 의미한다.

Keywords

Acknowledgement

순천대학교 교연비 사업에 의하여 연구되었음.

References

  1. 김도군(2022), "문헌고찰에 의한 도시 지역 도로퇴적물의 중금속 특성 및 적정 관리방안", 「LHI Journal」, 13(3): 125~140.
  2. 김승호・김연희・김종민・최영섭・배석진・조영관・김은선(2015), "광주지역 도로변 퇴적물의 PAHs 및 중금속 분포 특성", 「한국폐기물자원순환학회지」, 32: 297~ 308.
  3. 고우석(2020), "고속도로 도로청소를 통한 비점오염 저감효과 정량화 방안에 관한 연구", 석사학위논문, 건국대학교
  4. 오상호(2007), "초기강우로 인한 도로유출수의 수질 특성", 석사학위논문, 한밭대학교.
  5. 윤영식(2009), "메디아를 이용한 초기우수처리에 관한 연구", 석사학위논문, 서울산업대학교.
  6. 이준호・조용진・방기웅(2007), "교량도로 배수받이 퇴적물질의 입경별 오염물질 함량", 「대한환경공학회지」, 29: 1360~1365.
  7. 정혜령・최진영・나공태(2020), "도시지역 도로먼지의 중금속 오염 특성: 토지이용 특성에 따른 비교", 「환경분석과 독성보건」, 23: 101~111.
  8. 최현경・윤인주・신태천・김영훈(2018), "철도레일 부근 토양의 다환방향족 탄화수소 및 중금속 오염도 조사", 「한국환경과학회지」, 11: 947~956.
  9. 환경부(2016), "토양오염공정시험기준"
  10. 환경부(2018), "수질오염공정시험기준".
  11. 환경부(2019a), "토양측정망 및 토양오염실태조사 결과".
  12. 환경부(2019.3b), "오염총량관리기술지침"
  13. 환경부(2020.10.17), "비점오염 저감시설의 설치 및 관리 운영매뉴얼".
  14. Agarwal, A. K., T. Gupta, J. Lukose and A. P. Singh (2015), "Particulate Characterization and Size Distribution in the Exhaust of a Gasoline Homogeneous Charge Compression Ignition Engine", Aerosol and Air Quality Research, 15: 504~516.
  15. Baensch-Baltruschat, B, B. Kocher, F. Stock and G. Reifferscheid (2020), "Tyre and Road Wear Particles (TRWP): A Review of Generation, Properties, Emissions, Human Health Risk, Ecotoxicity, and Fate in the Environment", Science of the Total Environment, 733: 137823.
  16. Beji, A., K. Deboudt, S. Khardi, B. Muresan and L. Lumière, (2021), "Determinants of Rear-of-Wheel and Tire-Road Wear Particle Emissions by LightDuty Vehicles Using On-Road and Test Track Experiments", Atmospheric Pollution Research, 12: 231~244.
  17. Breault, R. F., K. P. Smith and J. R. Sorenson (2003), Residential Street-Dirt Accumulation Rates and Chemical Composition, and Removal Efficiencies by Mechanical and Vacuum-Type Sweepers, New Bedford, Massachusetts, 2003-04, Scientific Investigations Rep. No. 2005-5184, Reston: U.S. Department of the Interior, U.S. Geological Survey,
  18. Calabro, P. S. (2020), "Impact of Mechanical Street Cleaning and Rainfall Events on the Quantity and Heavy Metals Load of Street Sediments", Environmental Technology, 31(11): 1255~1262.
  19. Calvillo, S. J., E. S. Williams and B. W. Brooks (2015), "Street Dust: Implications for Stormwater and Air Quality, and Environmental Management through Street Sweeping", in Reviews of Environmental Contamination and Toxicology, (ed) Whitacre, D. M., 233: 71~128, Berlin: Springer.
  20. Crosby, C. J., M. A. Fullen, C. A. Booth and D. E. Searle (2014), "A Dynamic Approach to Urban Road Deposited Sediment Pollution Monitoring (Marylebone Road, London, UK)", Journal of Applied Geophysics, 105: 10~20.
  21. Deletic, A. and D. W. Orr (2005), "Pollution Buildup on Road Surfaces", Journal of Environmental Engineering, 131: 49~59.
  22. Gao, S., X. Wang, H. Li, Y. Kong, J. Chen and Z. Chen (2021), "Heavy Metals in Road-Deposited Sediment and Runoff in Urban and Intercity Expressways", Transportation Safety and Environment, 4: tdab030.
  23. Gelhardt, L., B. Kuch, U. Dittmer and A. Welker (2021), "Granulometric Distribution of Metals in Road-Deposited Sediments by Using Different Sieving Methods", Environmental Advances, 5: 100094.
  24. Giechaskiel, B., T. Grigoratos, M. Mathissen, J. Quik, P. Tromp, M. Gustafsson, V. Franco and P. Dilara (2024), "Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution", Sustainability, 16, 522.
  25. Jayarathne, A., B. Wijesiri, P. Egodawatta, G. A. Ayoko and A. Goonetilleke (2019), "Role of Adsorption Behavior on Metal Build-Up in Urban Road Dust", Journal of Environmental Sciences, 83: 85~95.
  26. Jeong, S. S., H. S. Kim, S-P. Lee, S. Y. Choi, J. E. Lee, S. C. Kim and J. E. Yang (2020), "Comparison of Pollution Indicies in Assessing the Heavy Metal(loid)s Pollution of Arable Soils Adjacent to Industrial", Korean Journal of Soil Science and Fertilizer, 53: 614~625.
  27. Kim, D.-G. and S.-O. Ko (2020), "Road-Deposited Sediments Mediating the Transfer of Anthropogenic Organic Matter to Stormwater Runoff", Environmental Geochemistry and Health, 43: 3287~3301.
  28. Kim, D.-G., H.-M. Kang and S.-O. Ko (2019), "Reduction of Non-Point Source Contaminants Associated with Road-Deposited Sediments by Sweeping", Environmental Science and Pollution Research, 26: 1192~1207.
  29. Kreider, M. L., J. M. Panko, B. L. McAtee, L. I. Sweet and B. L Finley (2010), "Physical and Chemical Characterization of Tire-Related Particles: Comparison of Particles Generated Using Different Methodologies", Science of The Total Environment, 408: 652~659.
  30. Legret, M., L. Odie, D. Demare and A. Jullien (2005), "Leaching of Heavy Metals and Polycyclic Aromatic Hydrocarbons from Reclaimed Asphalt Pavement", Water Research, 39: 3675~3685.
  31. Li, X., C. Poon and P. S. Liu (2001), "Heavy Metal Contamination of Urban Soil and Street Dusts in Hong Kong", Applied Geochemistry, 16: 1361~1368.
  32. Loganathan, P., S. Vigneswaran and J. Kandasamy (2013), "Road-Deposited Sediment Pollutants: A Critical Review of their Characteristics, Source Apportionment, and Management", Critical Reviews Environmental Scince and Technology, 43: 1315~1348.
  33. Martinelli, T. J., R. Waschbusch, R. Bannerman and A. Wisner (2002), Pollutant Loadings to Stormwater Run-Off from Expressways: The Impact of a Freeway Sweeping Program, Final Report No. WI-11-01, Madison: Wisconsin Dot.
  34. Nawrot, N., E. Wojciechowska, S. Rezania, J. WalkuszMiotk andn K. Pazdro (2020), "The Effects of Urban Vehicle Traffic on Heavy Metal Contamination in Road Sweeping Waste and Bottom Sediments Of Retention Tanks", Science of The Total Environment, 749: 141511.
  35. Nguyen, T. C., P. Loganathan, T. V. Nguyen, T. T. N. Pham, J. Kandasamy, M. Wu, R. Naidu and S. Vigneswaran (2015), "Trace Elements in Roaddeposited and Waterbed Sediments in Kogarah Bay, Sydney: Enrichment, Sources and Fractionation", Soil Research, 53: 401~411.
  36. Sanders, P. G., N. Xu, T. M. Dalka and M. M. Maricq (2003), "Airborne Brake Wear Debris: Size Distributions, Composition, and a Comparison of Dynamometer and Vehicle Tests", Environmental Science & Technology, 37: 4060~4069.
  37. Shabanda, I. S., I. B. Koki, K. H. Low, S. M. Zain, Khor and N. K. A. Bakar (2019), "Daily Exposure to Toxic Metals through Urban Road Dust from Industrial, Commercial, Heavy Traffic and Residential Areas in Petaling Jaya, Malaysia: A Health Risk Assessment", Environmental Science and Pollution Research, 26: 37193~37211.
  38. Shabbaj, I. I., M. A. Alghmdi, M. Shamy, S. K. Hassan, M. M. Alsharif and M. I. Khoder (2018), "Risk Assessment and Implication of Human Exposure to Road Dust Heavy Metals in Jeddah, Saudi Arabia", International Journal of Environmental Research and Public Health, 15: 36~57.
  39. Sommer, F., V. Dietze, A. Baum, J. Sauer, S. Gilge and C. Maschowski (2018), "Tire Abrasion as a Major Source of Microplastics in the Environment", Aerosol and Air Quality Research, 18: 2014~2028.
  40. Stone, M. and J. Marsalek (1996), "Trace Metal Composition and Speciation in Street Sediment: Sault Ste. Marie, Canada", Water, Air, and Soil Pollution, 87: 149~169.
  41. Świetlik, R., M. Trojanowska, M. Strzelecka and M. Bocho-Janiszewska (2015), "Fractionation and Mobility of Cu, Fe, Mn, Pb and Zn in the Road Dust Retained on Noise Barriers Along Expressway: A Potential Tool for Determining the Effects of Driving Conditions on Speciation of Emitted Particulate Metals", Environmental Pollution, 196: 404~413.
  42. Thorpe, A. and R. M. Harrison (2008), "Sources and Properties of Non-Exhaust Particulate Matter from Road Traffic: A Review", Science of The Total Environment, 400: 270~282.
  43. Wang, Q., Q. Zhang, X. C. Wang and Y. Ge (2020), "Siz e Distributions and Heavy Metal Pollution of Urban Road-Deposited Sediments (RDS) Related To Traffic Types", Environmental Science and Pollution Research, 27: 34199~34210.
  44. Wang, X., E. Liu, M. Yan, S. Zheng, Y. Fan, Y. Sun, Z. Li and J. Xu (2023), "Contamination and Source Apportionment of Metals in Urban Road Dust (Jinan, China) Integrating the Enrichment Factor, Receptor Models (FA-NNC and PMF), Local Moran's Index, Pb Isotopes and Source-Oriented Health Risk", Science of The Total Environment, 878: 163211.
  45. Yuen, J. Q., P. H. Olin, H. S. Lim, S. G. Benner, R. A. Sutherland and A. D. Ziegler (2012), "Accumulation of Potentially Toxic Elements in Road Deposited Sediments in Residential and Light Industrial Neighborhoods of Singapore", Journal of Environmental Management, 101: 151~163.
  46. 통계청, "국가통계포털", 2024.9.3 읽음. https://kosis. kr/index/index.do.html.