DOI QR코드

DOI QR Code

HARNACK INEQUALITY FOR PARABOLIC YAMABE-TYPE EQUATION UNDER INTEGRAL CURVATURE CONDITION ON MANIFOLDS

  • Liang Zhao (School of Mathematics Nanjing University of Aeronautics and Astronautics)
  • 투고 : 2024.02.05
  • 심사 : 2024.06.05
  • 발행 : 2025.01.31

초록

In this paper, we consider Yamabe-type equation ut = Δu + cuσ on complete Riemannian manifolds under integral curvature condition, where c, σ ≤ 1 are real constants. A new local gradient estimate for positive solutions to this equation is derived and as an application, we give a corresponding Harnack inequality.

키워드

과제정보

This work was supported by the Fundamental Research Funds for the Central Universities NS2023040.

참고문헌

  1. X. Dai, G. Wei, and Z. Zhang, Local Sobolev constant estimate for integral Ricci curvature bounds, Adv. Math. 325 (2018), 1–33. https://doi.org/10.1016/j.aim.2017.11.024
  2. S. W. Fang, Differential Harnack inequalities for heat equations with potentials under the Bernhard List's flow, Geom. Dedicata 161 (2012), 11–22. https://doi.org/10.1007/s10711-011-9690-0
  3. S. Fang, Differential Harnack estimates for backward heat equations with potentials under an extended Ricci flow, Adv. Geom. 13 (2013), no. 4, 741–755. https://doi.org/10.1515/advgeom-2013-0020
  4. S. Fang, Differential Harnack inequalities for heat equations with potentials under geometric flows, Arch. Math. (Basel) 100 (2013), no. 2, 179–189. https://doi.org/10.1007/s00013-013-0482-7
  5. B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 525–598. https://doi.org/10.1002/cpa.3160340406
  6. Z. Guo and J. Wei, Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity, Manuscripta Math. 120 (2006), no. 2, 193-209. https://doi.org/10.1007/s00229-006-0001-2
  7. Y. Li and X. Zhu, Harnack estimates for a heat-type equation under the Ricci flow, J. Differential Equations 260 (2016), no. 4, 3270-3301. https://doi.org/10.1016/j.jde.2015.10.024
  8. W. Wang, Harnack inequality, heat kernel bounds and eigenvalue estimates under integral Ricci curvature bounds, J. Differential Equations 269 (2020), no. 2, 1243–1277. https://doi.org/10.1016/j.jde.2020.01.003
  9. Y. Y. Yang, Gradient estimates for the equation ∆u + cu−α = 0 on Riemannian manifolds, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 6, 1177–1182. https://doi.org/10.1007/s10114-010-7531-y
  10. F. Yang and L. Zhang, Gradient estimates and Harnack inequalities for a nonlinear parabolic equation on smooth metric measure spaces, J. Differential Equations 268 (2020), no. 8, 4577–4617. https://doi.org/10.1016/j.jde.2019.10.030
  11. L. Zhang, Hamilton's gradient estimates for a nonlinear partial differential equation under the Yamabe flow, J. Math. Anal. Appl. 477 (2019), no. 2, 1353–1368. https://doi.org/10.1016/j.jmaa.2019.05.016
  12. L. Zhang, Local parabolic and elliptic gradient estimates for a generalized heat-type equation under the Yamabe flow, J. Math. Anal. Appl. 485 (2020), no. 1, 123770, 35 pp. https://doi.org/10.1016/j.jmaa.2019.123770
  13. Q. S. Zhang and M. Zhu, Li-Yau gradient bound for collapsing manifolds under integral curvature condition, Proc. Amer. Math. Soc. 145 (2017), no. 7, 3117–3126. https://doi.org/10.1090/proc/13418
  14. L. Zhao, Liouville theorem for weighted p-Lichnerowicz equation on smooth metric measure space, J. Differential Equations 266 (2019), no. 9, 5615–5624. https://doi.org/10.1016/j.jde.2018.10.035
  15. L. Zhao and D. Yang, Gradient estimates for the p-Laplacian Lichnerouica equation on smooth metric measure spaces, Proc. Amer. Math. Soc. 146 (2018), no. 12, 5451-5461. https://doi.org/10.1090/proc/13997