과제정보
This work was supported by the Fundamental Research Funds for the Central Universities NS2023040.
참고문헌
- X. Dai, G. Wei, and Z. Zhang, Local Sobolev constant estimate for integral Ricci curvature bounds, Adv. Math. 325 (2018), 1–33. https://doi.org/10.1016/j.aim.2017.11.024
- S. W. Fang, Differential Harnack inequalities for heat equations with potentials under the Bernhard List's flow, Geom. Dedicata 161 (2012), 11–22. https://doi.org/10.1007/s10711-011-9690-0
- S. Fang, Differential Harnack estimates for backward heat equations with potentials under an extended Ricci flow, Adv. Geom. 13 (2013), no. 4, 741–755. https://doi.org/10.1515/advgeom-2013-0020
- S. Fang, Differential Harnack inequalities for heat equations with potentials under geometric flows, Arch. Math. (Basel) 100 (2013), no. 2, 179–189. https://doi.org/10.1007/s00013-013-0482-7
- B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 525–598. https://doi.org/10.1002/cpa.3160340406
- Z. Guo and J. Wei, Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity, Manuscripta Math. 120 (2006), no. 2, 193-209. https://doi.org/10.1007/s00229-006-0001-2
- Y. Li and X. Zhu, Harnack estimates for a heat-type equation under the Ricci flow, J. Differential Equations 260 (2016), no. 4, 3270-3301. https://doi.org/10.1016/j.jde.2015.10.024
- W. Wang, Harnack inequality, heat kernel bounds and eigenvalue estimates under integral Ricci curvature bounds, J. Differential Equations 269 (2020), no. 2, 1243–1277. https://doi.org/10.1016/j.jde.2020.01.003
- Y. Y. Yang, Gradient estimates for the equation ∆u + cu−α = 0 on Riemannian manifolds, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 6, 1177–1182. https://doi.org/10.1007/s10114-010-7531-y
- F. Yang and L. Zhang, Gradient estimates and Harnack inequalities for a nonlinear parabolic equation on smooth metric measure spaces, J. Differential Equations 268 (2020), no. 8, 4577–4617. https://doi.org/10.1016/j.jde.2019.10.030
- L. Zhang, Hamilton's gradient estimates for a nonlinear partial differential equation under the Yamabe flow, J. Math. Anal. Appl. 477 (2019), no. 2, 1353–1368. https://doi.org/10.1016/j.jmaa.2019.05.016
- L. Zhang, Local parabolic and elliptic gradient estimates for a generalized heat-type equation under the Yamabe flow, J. Math. Anal. Appl. 485 (2020), no. 1, 123770, 35 pp. https://doi.org/10.1016/j.jmaa.2019.123770
- Q. S. Zhang and M. Zhu, Li-Yau gradient bound for collapsing manifolds under integral curvature condition, Proc. Amer. Math. Soc. 145 (2017), no. 7, 3117–3126. https://doi.org/10.1090/proc/13418
- L. Zhao, Liouville theorem for weighted p-Lichnerowicz equation on smooth metric measure space, J. Differential Equations 266 (2019), no. 9, 5615–5624. https://doi.org/10.1016/j.jde.2018.10.035
- L. Zhao and D. Yang, Gradient estimates for the p-Laplacian Lichnerouica equation on smooth metric measure spaces, Proc. Amer. Math. Soc. 146 (2018), no. 12, 5451-5461. https://doi.org/10.1090/proc/13997