DOI QR코드

DOI QR Code

The Anti-Inflammatory Activities of Benzylideneacetophenone Derivatives in LPS Stimulated BV2 Microglia Cells and Mice

  • Mijin Kim (Department of Molecular Medicine, School of Medicine, Ewha Womans University) ;
  • Seungmin Kang (Department of Molecular Medicine, School of Medicine, Ewha Womans University) ;
  • Seikwan Oh (Department of Molecular Medicine, School of Medicine, Ewha Womans University)
  • 투고 : 2024.03.22
  • 심사 : 2024.06.09
  • 발행 : 2025.01.01

초록

A previously reported study highlighted the neuroprotective potential of the novel benzylideneacetophenone derivative, JC3, in mice. In pursuit of compounds with even more robust neuroprotective and anti-inflammatory properties compared to JC3, we synthesized substituted 1,3-diphenyl-2-propen-1-ones based on chalcones. Molecular modeling studies aimed at discerning the chemical structural features conducive to heightened biological activity revealed that JCII-8,10,11 exhibited the widest HOMO-LUMO gap within this category, indicating facile electron and radical transfer between HOMO and LUMO in model assessments. From the pool of synthesized compounds, JCII-8,10,11 were selected for the present investigation. The biological assays involving JCII-8,10,11 demonstrated their concentration-dependent suppression of iNOS and COX-2 protein levels, alongside various cytokine mRNA expressions in LPS-induced murine microglial BV2 cells. Furthermore, western blot analyses were conducted to investigate the MAPK pathways and NF-κB/p65 nuclear translocation. These evaluations conclusively confirmed the inflammatory inhibition effects in both in vitro and in vivo inflammation models. These findings establish JCII-8,10,11 as potent anti-inflammatory agents, hindering inflammatory mediators and impeding NF-κB/p65 nuclear translocation via JNK and ERK MAPK phosphorylation in BV2 cells. The study positions them as potential therapeutics for inflammation-related conditions. Additionally, JCII-11 exhibited greater activity compared to other tested JCII compounds.

키워드

과제정보

This research was supported by Ewha Womans University scholarship of 2021 and Ewha Graduate Research Fellowship (M.K.).

참고문헌

  1. Aktan, F. (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci. 75, 639-653.
  2. Allison, D. J. and Ditor, D. S. (2014) The common inflammatory etiology of depression and cognitive impairment: a therapeutic target. J. Neuroinflammation 11, 151.
  3. Banks, W. A., Gray, A. M., Erickson, M. A., Salameh, T. S., Damodarasamy, M., Sheibani, N., Meabon, J. S., Wing, E. E., Morofuji, Y., Cook, D. G. and Reed, M. J. (2015) Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J. Neuroinflammation 12, 223.
  4. Bogdan, C. (2001) Nitric oxide and the immune response. Nat. Immunol. 2, 907-916.
  5. Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. and Zhao, L. (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9, 7204-7218.
  6. Choi, S. K., Park, Y. S., Choi, D. K. and Chang, H. I. (2008) Effects of astaxanthin on the production of NO and the expression of COX-2 and iNOS in LPS-stimulated BV2 microglial cells. J. Microbiol. Biotechnol. 18, 1990-1996.
  7. Choi, Y. H. and Park, H. Y. (2012) Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells. J. Biomed. Sci. 19, 31.
  8. Chun, K. S., Kang, J. Y., Kim, O. H., Kang, H. and Surh, Y. J. (2002) Effects of yakuchinone A and yakuchinone B on the phorbol ester induced expression of COX-2 and iNOS and activation of NF-kappaB in mouse skin. J. Environ. Pathol. Toxicol. Oncol. 21, 131-139.
  9. Colonna, M. and Butovsky, O. (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol. 35, 441-468.
  10. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. and Stewart, J. J. P. (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902-3909.
  11. Filipović, D., Todorović, N., Bernardi, R. E. and Gass, P. (2017) Oxidative and nitrosative stress pathways in the brain of socially isolated adult male rats demonstrating depressive- and anxiety-like symptoms. Brain Struct. Funct. 222, 1-20.
  12. Firestein, G. S. (2003) Evolving concepts of rheumatoid arthritis. Nature 423, 356-361.
  13. Ha, S. K., Moon, E., Ju, M. S., Kim, D. H., Ryu, J. H., Oh, M. S. and Kim, S. Y. (2012) 6-Shogaol, a ginger product, modulates neuroinflammation: a new approach to neuroprotection. Neuropharmacology 63, 211-223.
  14. Han, H., Lee, K. S., Rong, W. and Zhang, G. (2012) Different roles of peripheral mitogen-activated protein kinases in carrageenan-induced arthritic pain and arthritis in rats. Anesth. Analg. 115, 1221-1227.
  15. Jang, S., Jung, J. C., Kim, D. H., Ryu, J. H., Lee, Y., Jung, M. and Oh, S. (2009) The neuroprotective effects of benzylideneacetophenone derivatives on excitotoxicity and inflammation via phosphorylated Janus tyrosine kinase 2/phosphorylated signal transducer and activator of transcription 3 and mitogen-activated protein K pathways. J. Pharmacol. Exp. Ther. 328, 435-447.
  16. Jung, J. C., Jang, S., Lee, Y., Min, D., Lim, E., Jung, H., Oh, M., Oh, S. and Jung, M. (2008) Efficient synthesis and neuroprotective effect of substituted 1,3-diphenyl-2-propen-1-ones. J. Med. Chem. 51, 4054-4058.
  17. Kim, M., Sur, B., Villa, T., Nah, S. Y. and Oh, S. (2021a) Inhibitory activity of gintonin on inflammation in human IL-1β-stimulated fibroblast-like synoviocytes and collagen-induced arthritis in mice. J. Ginseng Res. 45, 510-518.
  18. Kim, M., Sur, B., Villa, T., Yun, J., Nah, S. Y. and Oh, S. (2021b) Gintonin regulates inflammation in human IL-1β-stimulated fibroblast-like synoviocytes and carrageenan/kaolin-induced arthritis in rats through LPAR2. J. Ginseng Res. 45, 575-582.
  19. Kohn, W., Becke, A. D. and Parr, R. G. (1996) Density functional theory of electronic structure. J. Phys. Chem. 100, 12974-12980.
  20. Kwon, H. S. and Koh, S.-H. (2020) Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl. Neurodegener. 9, 42.
  21. Lieb, K., Engels, S. and Fiebich, B. L. (2003) Inhibition of LPS-induced iNOS and NO synthesis in primary rat microglial cells. Neurochem. Int. 42, 131-137.
  22. Liu, B. and Hong, J. S. (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther. 304, 1-7.
  23. Liu, T., Zhang, L., Joo, D. and Sun, S. C. (2017) NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2, 17023.
  24. Liu, Y., Zhang, Y., Zheng, X., Fang, T., Yang, X., Luo, X., Guo, A., Newell, K. A., Huang, X.-F. and Yu, Y. (2018) Galantamine improves cognition, hippocampal inflammation, and synaptic plasticity impairments induced by lipopolysaccharide in mice. J. Neuroinflammation 15, 112.
  25. Maldonado, R. F., Sá-Correia, I. and Valvano, M. A. (2016) Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol. Rev. 40, 480-493.
  26. Mittli, D., Tukacs, V., Ravasz, L., Csősz, É., Kozma, T., Kardos, J., Juhász, G. and Kékesi, K. A. (2023) LPS-induced acute neuroinflammation, involving interleukin-1 beta signaling, leads to proteomic, cellular, and network-level changes in the prefrontal cortex of mice. Brain Behav. Immun. Health 28, 100594.
  27. Natarajan, K., Abraham, P., Kota, R. and Isaac, B. (2018) NF-κB-iNOS-COX2-TNF α inflammatory signaling pathway plays an important role in methotrexate induced small intestinal injury in rats. Food Chem. Toxicol. 118, 766-783.
  28. Noh, H., Jeon, J. and Seo, H. (2014) Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochem. Int. 69, 35-40.
  29. Oeckinghaus, A. and Ghosh, S. (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol. 1, a000034.
  30. Oh, S., Jang, S., Kim, D., Han, I. O. and Jung, J. C. (2006) Synthesis and evaluation of biological properties of benzylideneacetophenone derivatives. Arch. Pharm. Res. 29, 469-475.
  31. Park, B. S. and Lee, J. O. (2013) Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 45, e66.
  32. Park, B. S., Song, D. H., Kim, H. M., Choi, B. S., Lee, H. and Lee, J. O. (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458, 1191-1195.
  33. Perry, V. H., Nicoll, J. A. and Holmes, C. (2010) Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6, 193-201.
  34. Roy, A., Srivastava, M., Saqib, U., Liu, D., Faisal, S. M., Sugathan, S., Bishnoi, S. and Baig, M. S. (2016) Potential therapeutic targets for inflammation in toll-like receptor 4 (TLR4)-mediated signaling pathways. Int. Immunopharmacol. 40, 79-89.
  35. Sheng, W., Zong, Y., Mohammad, A., Ajit, D., Cui, J., Han, D., Hamilton, J. L., Simonyi, A., Sun, A. Y., Gu, Z., Hong, J.-S., Weisman, G. A. and Sun, G. Y. (2011) Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA2-IIA expression in astrocytes and microglia. J. Neuroinflammation 8, 121.
  36. Streit, W. J., Mrak, R. E. and Griffin, W. S. (2004) Microglia and neuroinflammation: a pathological perspective. J. Neuroinflammation 1, 14.
  37. Tas, S. W., Remans, P. H., Reedquist, K. A. and Tak, P. P. (2005) Signal transduction pathways and transcription factors as therapeutic targets in inflammatory disease: towards innovative antirheumatic therapy. Curr. Pharm. Des. 11, 581-611.
  38. Wu, Y., Zhang, Y., Wang, L., Diao, Z. and Liu, W. (2015) The role of autophagy in kidney inflammatory injury via the NF-κB route induced by LPS. Int. J. Med. Sci. 12, 655-667.
  39. Yamazaki, R., Hatano, H., Aiyama, R., Matsuzaki, T., Hashimoto, S. and Yokokura, T. (2000) Diarylheptanoids suppress expression of leukocyte adhesion molecules on human vascular endothelial cells. Eur. J. Pharmacol. 404, 375-385.
  40. Yang, L., Zhou, R., Tong, Y., Chen, P., Shen, Y., Miao, S. and Liu, X. (2020) Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol. Dis. 140, 104814.