References
- Ahmed, S., Mundhe, N., Borgohain, M., Chowdhury, L., Kwatra, M., Bolshette, N., Ahmed, A. and Lahkar, M. (2016) Diosmin modulates the NF-kB signal transduction pathways and downregulation of various oxidative stress markers in alloxan-induced diabetic nephropathy. Inflammation 39, 1783-1797.
- Alam, W., Khan, H., Shah, M. A., Cauli, O. and Saso, L. (2020) Kaempferol as a dietary anti-inflammatory agent: current therapeutic standing. Molecules 25, 4073.
- Amalan, V., Vijayakumar, N., Indumathi, D. and Ramakrishnan, A. (2016) Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: In vivo approach. Biomed. Pharmacother. 84, 230-236.
- American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33, S62-S69.
- Amorim, R. G., Guedes, G. D. S., Vasconcelos, S. M. L. and Santos, J. C. F. (2019) Kidney disease in diabetes mellitus: cross-linking between hyperglycemia, redox imbalance and inflammation. Arq. Bras. Cardiol. 112, 577-587.
- Avila-Carrasco, L., García-Mayorga, E. A., Díaz-Avila, D. L., Garza Veloz, I., Martinez-Fierro, M. L. and González-Mateo, G. T. (2021) Potential therapeutic effects of natural plant compounds in kidney disease. Molecules 26, 6096.
- Baliou, S., Adamaki, M., Ioannou, P., Pappa, A., Panayiotidis, M. I., Christodoulou, I., Spandidos, D. A., Kyriakopoulos, A. M. and Zoumpourlis, V. (2021) Ameliorative effect of taurine against diabetes and renal-associated disorders (review). Med. Int. 1, 3.
- Borg, R., Carlson, N., Søndergaard, J. and Persson, F. (2023) The growing challenge of chronic kidney disease: an overview of current knowledge. Int. J. Nephrol. 2023, 9609266.
- Bülow, R. D. and Boor, P. (2019) Extracellular matrix in kidney fibrosis: more than just a scaffold. J. Histochem. Cytochem. 67, 643-661.
- Caturano, A., D'Angelo, M., Mormone, A., Russo, V., Mollica, M. P., Salvatore, T., Galiero, R., Rinaldi, L., Vetrano, E., Marfella, R., Monda, M., Giordano, A. and Sasso, F. C. (2023) Oxidative stress in type 2 diabetes: impacts from pathogenesis to lifestyle modifications. Curr. Issues Mol. Biol. 45, 6651-6666.
- Chen, J., Guo, R., Yan, H., Tian, L., You, Q., Li, S., Huang, R. and Wu, K. (2014) Naringin inhibits ROS-activated MAPK pathway in high glucose-induced injuries in H9c2 cardiac cells. Basic Clin. Pharmacol. Toxicol. 114, 293-304.
- Chen, L. Y., Cheng, H. L., Liao, C. K., Kuan, Y. H., Liang, T. J., Tseng, T. J. and Lin, H. C. (2023) Luteolin improves nephropathy in hyperglycemic rats through anti-oxidant, anti-inflammatory, and antiapoptotic mechanisms. J. Funct. Foods 102, 105461.
- Chen, Y. J., Kong, L., Tang, Z. Z., Zhang, Y. M., Liu, Y., Wang, T. Y. and Liu, Y. W. (2019) Hesperetin ameliorates diabetic nephropathy in rats by activating Nrf2/ARE/glyoxalase 1 pathway. Biomed. Pharmacother. 111, 1166-1175.
- Cory, H., Passarelli, S., Szeto, J., Tamez, M. and Mattei, J. (2018) The role of polyphenols in human health and food systems: a mini review. Front. Nutr. 5, 87.
- Donate-Correa, J., Ferri, C. M., Sánchez-Quintana, F., Pérez-Castro, A., González-Luis, A., Martín-Núñez, E., Mora-Fernández, C. and Navarro-González, J. F. (2021) Inflammatory cytokines in diabetic kidney disease: pathophysiologic and therapeutic implications. Front. Med. 7, 628289.
- Dong, R., Zhang, X., Liu, Y., Zhao, T., Sun, Z., Liu, P., Xiang, Q., Xiong, J., Du, X., Yang, X., Gui, D. and Xu, Y. (2023) Rutin alleviates EndMT by restoring autophagy through inhibiting HDAC1 via PI3K/AKT/mTOR pathway in diabetic kidney disease. Phytomedicine 112, 154700.
- Duraisamy, S., Vijayakumar, N., Rajendran, J., Venkatesan, A., Kartha, B., Kandasamy, S. P., Nicoletti, M., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M. and Govindarajan, M. (2022) Facile synthesis of silver nanoparticles using the Simarouba glauca leaf extract and their impact on biological outcomes: a novel perspective for nano-drug development. J. Drug Deliv. Sci. Technol. 69, 103160.
- Evans, J. A., Mendonca, P. and Soliman, K. F. (2023) Involvement of Nrf2 activation and NF-kB pathway inhibition in the antioxidant and anti-inflammatory effects of hesperetin in activated BV-2 microglial cells. Brain Sci. 13, 1144.
- Fakhruddin, S., Alanazi, W. and Jackson, K. E. (2017) Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury. J. Diabetes Res. 9, 2017.
- Gai, Z., Wang, T., Visentin, M., Kullak-Ublick, G. A., Fu, X. and Wang, Z. (2019) Lipid accumulation and chronic kidney disease. Nutrients 11, 722.
- Gál, R., Halmosi, R., Gallyas, F., Jr., Tschida, M., Mutirangura, P., Tóth, K., Alexy, T. and Czopf, L. (2023) Resveratrol and beyond: the effect of natural polyphenols on the cardiovascular system: a narrative review. Biomedicines 11, 2888.
- Ganesan, D., Albert, A., Paul, E., Ananthapadmanabhan, K., Andiappan, R. and Sadasivam, S. G. (2020) Rutin ameliorates metabolic acidosis and fibrosis in alloxan induced diabetic nephropathy and cardiomyopathy in experimental rats. Mol. Cell. Biochem. 471, 41-50.
- Gheith, O., Farouk, N., Nampoory, N., Halim, M. A. and Al-Otaibi, T. (2016) Diabetic kidney disease: worldwide difference of prevalence and risk factors. J. Nephropharmacol. 5, 49.
- Giacco, F. and Brownlee, M. (2010) Oxidative stress and diabetic complications. Circ. Res. 107, 1058-1070.
- Gitanjali, J., Ram, D. S. D., Kavitha, R., Amalan, V., Alahmadi, T. A., Alharbi, S. A., Kandasamy, S., Shanmuganthan, R. and Vijayakumar, N. (2023) Antimicrobial, antioxidant, anticancer, and antithrombotic, competency of saponins from the root of Decalepis hamiltonii. Environ. Res. 231, 116096.
- Gomathi, D., Kalaiselvi, M., Ravikumar, G., Devaki, K. and Uma, C. (2014) Evaluation of antioxidants in the kidney of streptozotocin induced diabetic rats. Indian J. Clin. Biochem. 29, 221-226.
- Gomes, I. B., Porto, M. L., Santos, M. C., Campagnaro, B. P., Gava, A. L., Meyrelles, S. S., Pereira, T. M. and Vasquez, E. C. (2015) The protective effects of oral low-dose quercetin on diabetic nephropathy in hypercholesterolemic mice. Front. Physiol. 6, 247.
- Guerreiro, Í., Ferreira-Pêgo, C., Carregosa, D., Santos, C. N., Menezes, R., Fernandes, A. S. and Costa, J. G. (2022) Polyphenols and their metabolites in renal diseases: an overview. Foods 11, 1060.
- Han, X., Shen, T. and Lou, H. (2007) Dietary polyphenols and their biological significance. Int. J. Mol. Sci. 8, 950-988.
- Hao, H. H., Shao, Z. M., Tang, D. Q., Lu, Q., Chen, X., Yin, X. X., Wu, J. and Chen, H. (2012) Preventive effects of rutin on the development of experimental diabetic nephropathy in rats. Life Sci. 91, 959-967.
- Hoogeveen, E. K. (2022) The epidemiology of diabetic kidney disease. Kidney Dial. 2, 433-442.
- Huang, J., Huang, K., Lan, T., Xie, X., Shen, X., Liu, P. and Huang, H. (2013) Curcumin ameliorates diabetic nephropathy by inhibiting the activation of the SphK1-S1P signaling pathway. Mol. Cell. Endocrinol. 365, 231-240.
- Huang, Q. L., Huang, L. N., Zhao, G. Y., Liu, C., Pan, X. Y., Li, Z. R., Jing, X. H., Qiu, Z. Y. and Xin, R. H. (2024) Naringin attenuates Actinobacillus pleuropneumoniae-induced acute lung injury via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway. BMC Vet. Res. 20, 204.
- Iriondo, M. N., Etxaniz, A., Varela, Y. R., Ballesteros, U., Lázaro, M., Valle, M., Fracchiolla, D., Martens, S., Montes, L. R., Goñi, F. M. and Alonso, A. (2023) Effect of ATG12-ATG5-ATG16L1 autophagy E3-like complex on the ability of LC3/GABARAP proteins to induce vesicle tethering and fusion. Cell. Mol. Life Sci. 80, 56.
- Jain, D., Bansal M. K., Dalvi, R., Upganlawar, A. and Somani, R. (2014) Protective effect of diosmin against diabetic neuropathy in experimental rats. J. Integr. Med. 12, 35-41.
- Jain, D. and Saha, S. (2017) Antioxidant and antihyperglycaemic effects of naringenin arrest the progression of diabetic nephropathy in diabetic rats. Egypt. Pharm. 16, 144-151.
- Jankowski, J., Floege, J., Fliser, D., Bohm, M. and Marx, N. (2021) Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143, 1157-1172.
- Jha, J. C., Banal, C., Chow, B. S., Cooper, M. E. and Jandeleit-Dahm, K. (2016) Diabetes and kidney disease: role of oxidative stress. Antioxid. Redox Signal. 25, 657-684.
- Jin, Q., Liu, T., Qiao, Y., Liu, D., Yang, L., Mao, H., Ma, F., Wang, Y., Peng, L. and Zhan, Y. (2023) Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. Front. Immunol. 14, 1185317.
- Kang, M. K., Park, S. H., Choi, Y. J., Shin, D. and Kang, Y. H. (2015) Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition. J. Mol. Med. (Berl.) 93, 759-772.
- Kandemir, F. M., Ozkaraca, M., Küçükler, S., Caglayan, C. and Hanedan, B. (2018) Preventive effects of hesperidin on diabetic nephropathy induced by streptozotocin via modulating TGF-β1 and oxidative DNA damage. Toxin Rev. 37, 287-293.
- Khan, M. F., Mathur, A., Pandey, V. K. and Kakkar, P. (2022) Naringenin alleviates hyperglycemia-induced renal toxicity by regulating activating transcription factor 4-C/EBP homologous protein mediated apoptosis. J. Cell Commun. Signal. 16, 271-291.
- Khattar, S., Khan, S. A., Zaidi, S. A. A., Darvishikolour, M., Farooq, U., Naseef, P. P., Kurunian, M. S., Khan, M. Z., Shamim, A., Khan, M. M. U., Iqbal, Z. and Mirza, M. A. (2022) Resveratrol from dietary supplement to a drug candidate: an assessment of potential. Pharmaceuticals (Basel) 15, 957.
- Kim, K. K., Sheppard, D. and Chapman, H. A. (2018) TGF-β1 signaling and tissue fibrosis. Cold Spring Harb. Perspect Biol. 10, a022293.
- Kim, K. P., Williams, C. E. and Lemmon, C. A. (2022) Cell-matrix interactions in renal fibrosis. Kidney Dial. 2, 607-624.
- Kolluru, G. K., Bir, S. C. and Kevil, C. G. (2012) Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int. J. Vasc. Med. 2012, 918267.
- Kottaisamy, C. P. D., Raj, D. S., Prasanth Kumar, V. and Sankaran, U. (2021) Experimental animal models for diabetes and its related complications-a review. Lab. Anim. Res. 37, 23.
- Koushki, M., Amiri-Dashatan, N., Ahmadi, N., Abbaszadeh, H. A. and Rezaei-Tavirani, M. (2018) Resveratrol: a miraculous natural compound for diseases treatment. Food Sci. Nutr. 6, 2473-2490.
- Kumari, S., Kamboj, A., Wanjari, M. and Sharma, A. K. (2021) Nephroprotective effect of Vanillic acid in STZ-induced diabetic rats. J. Diabetes Metab. Disord. 20, 571-582.
- Lai, P. B., Zhang, L. and Yang, L. Y. (2012) Quercetin ameliorates diabetic nephropathy by reducing the expressions of transforming growth factor-β1 and connective tissue growth factor in streptozotocin-induced diabetic rats. Ren. Fail. 34, 83-87.
- Lee, E. J., Kang, M. K., Kim, D. Y., Kim, Y. H., Oh, H. and Kang, Y. H. (2018) Chrysin inhibits advanced glycation end products-induced kidney fibrosis in renal mesangial cells and diabetic kidneys. Nutrients 10, 882.
- Lee, O. Y. A., Wong, A. N. N., Ho, C. Y., Tse, K. W., Chan, A. Z., Leung, G. P. H., Kwan, Y. W. and Yeung, M. H. Y. (2024) Potentials of natural antioxidants in reducing inflammation and oxidative stress in chronic kidney disease. Antioxidants 13, 751.
- Leon, B. M. and Maddox, T. M. (2015) Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 6, 1246.
- Liang, J., Wang, C., Peng, J., Li, W., Jin, Y., Liu, Q., Meng, Q., Liu, K. and Sun, H. (2016) Naringin regulates cholesterol homeostasis and inhibits inflammation via modulating NF-κB and ERK signaling pathways in vitro. Pharmazie 71, 101-108.
- Mahfoz, A. M., El-Latif, H. A. A., Ahmed, L. A., Hassanein, N. M. and Shoka, A. A. (2016) Anti-diabetic and renoprotective effects of aliskiren in streptozotocin-induced diabetic nephropathy in female rats. Naunyn Schmiedebergs Arch. Pharmacol. 389, 1315-1324.
- Martemucci, G., Costagliola, C., Mariano, M., D'andrea, L., Napolitano, P. and D'Alessandro, A. G. (2022) Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2, 48-78.
- Meng, F., Li, J., Yang, X., Yuan, X. and Tang, X. (2018) Role of Smad3 signaling in the epithelial mesenchymal transition of the lens epithelium following injury. Int. J. Mol. Med. 42, 851-860.
- Nasri, H. and Rafieian-Kopaei, M. (2015) Diabetes mellitus and renal failure: prevention and management. Res. J. Med. Sci. 20, 1112-1120.
- Nentwich, M. M. and Ulbig, M. W. (2015) Diabetic retinopathy-ocular complications of diabetes mellitus. World J. Diabetes 6, 489.
- Nie, K., Gao, Y., Chen, S., Wang, Z., Wang, H., Tang, Y., Su, H., Lu, F., Dong, H. and Fang, K. (2023) Diosgenin attenuates non-alcoholic fatty liver disease in type 2 diabetes through regulating SIRT6-related fatty acid uptake. Phytomedicine 111, 154661.
- Pandey, K. B. and Rizvi, S. I. (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2, 270-278.
- Pasupuleti, V. R., Arigela, C. S., Gan, S. H., Salam, S. K., Krishnan, K. T., Rahman, N. A. and Jeffree, M. S. (2020) A review on oxidative stress, diabetic complications, and the roles of honey polyphenols. Oxid. Med. Cell. Longev. 2020, 8878172.
- Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D. and Bitto, A. (2017) Oxidative stress: harms and benefits for human health. Oxid. Med. Cell. Longev. 2017, 8416763.
- Rangel, É. B., de Sá, J. R., Melaragno, C. S., Gonzalez, A. M., Linhares, M. M., Salzedas, A. and Medina-Pestana, J. O. (2009) Kidney transplant in diabetic patients: modalities, indications and results. Diabetol. Metab. Syndr. 1, 2.
- Reiss, A. B., Jacob, B., Zubair, A., Srivastava, A., Johnson, M. and De Leon, J. (2024) Fibrosis in chronic kidney disease: pathophysiology and therapeutic targets. J. Clin. Med. 13, 1881.
- Ren, J., Lu, Y., Qian, Y., Chen, B., Wu, T. and Ji, G. (2019) Recent progress regarding kaempferol for the treatment of various diseases. Exp. Ther. Med. 18, 2759-2776.
- Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A., Palai, S. and Devi, R. (2022) Dietary polyphenols and their role in oxidative stress-induced human diseases: insights into protective effects, antioxidant potentials and mechanism(s) of action. Front. Pharmacol. 13, 806470.
- Runwal, G., Stamatakou, E., Siddiqi, F. H., Puri, C., Zhu, Y. and Rubinsztein, D. C. (2019) LC3-positive structures are prominent in autophagy-deficient cells. Sci. Rep. 9, 10147.
- Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K. and Shaw, J. E. (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas. Diabetes Res. Clin. Pract. 157, 107843.
- Samy, J. V. R. A., Kumar, N., Singaravel, S., Krishnamoorthy, R., Alshuniaber, M. A., Gatasheh, M. K., Venkatesan, A., Natesan, V. and Kim, S. J. (2023) Effect of prunetin on streptozotocin-induced diabetic nephropathy in rats - a biochemical and molecular approach. Biomol. Ther. (Seoul) 31, 619-628.
- Schena, F. P. and Gesualdo, L. (2005) Pathogenetic mechanisms of diabetic nephropathy. J. Am. Soc. Nephrol. 16, S30-S33.
- Selby, N. M. and Taal, M. W. (2020) An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes. Metab. 22, 3-15.
- Sharma, D., Gondaliya, P., Tiwari, V. and Kalia, K. (2019) Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling. Biomed. Pharmacother. 109, 1610-1619.
- Singh, B., Kumar, A., Singh, H., Kaur, S., Arora, S. and Singh, B. (2022) Protective effect of vanillic acid against diabetes and diabetic nephropathy by attenuating oxidative stress and upregulation of NF-κB, TNF-α and COX-2 proteins in rats. Phytother. Res. 36, 1338-1352.
- Singh, V. P., Bali, A., Singh, N. and Jaggi, A. S. (2014) Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 18, 1-14.
- Sureshbabu, A., Muhsin, S. A. and Choi, M. E. (2016) TGF-β signaling in the kidney: profibrotic and protective effects. Am. J. Physiol. Renal Physiol . 310, F596-F606. Tr
- Trackman, P. C. (2016) Enzymatic and non-enzymatic functions of the lysyl oxidase family in bone. Matrix Biol. 52-54, 7-18.
- Unuofin, J. O. and Lebelo, S. L. (2020) Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: an updated review. Oxid. Med. Cell. Longev. 2020, 1356893.
- Venkatesan, A., Roy, A., Kulandaivel, S., Natesan, V. and Kim, S. J. (2022) p-Coumaric acid nanoparticles ameliorate diabetic nephropathy via regulating mRNA expression of KIM-1 and GLUT-2 in streptozotocin-induced diabetic rats. Metabolites 12, 1166.
- Venkatesan, A., Vinoth Raja Antony Samy, J., Balakrishnan, K., Natesan, V. and Kim, S. J. (2023) In vitro antioxidant, anti-inflammatory, antimicrobial, and antidiabetic activities of synthesized chitosan loaded p-coumaric acid nanoparticles. Curr. Pharm. Biotechnol. 24, 1178-1194.
- Wang, G. G., Lu, X. H., Li, W., Zhao, X. and Zhang, C. (2011) Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid. Based Complement. Alternat. Med. 2011, 323171.
- Wang, W., Sun, W., Cheng, Y., Xu, Z. and Cai, L. (2019) Role of sirtuin-1 in diabetic nephropathy. J. Mol. Med. (Berl.) 97, 291-309.
- Wang, Z., Wu, Q., Wang, H., Gao, Y., Nie, K., Tang, Y., Su, H., Hu, M., Gong, J., Fang, K. and Dong, H. (2022) Diosgenin protects against podocyte injury in early phase of diabetic nephropathy through regulating SIRT6. Phytomedicine 104, 154276.
- Yan, Z., Zhong, Y., Duan, Y., Chen, Q. and Li, F. (2020) Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr. 6, 115-123.
- Yang, A., Hacheney, I. and Wu, Y. W. (2017) Semisynthesis of autophagy protein LC3 conjugates. Bioorg. Med. Chem. 25, 4971-4976.
- Yang, Y. and Xu, G. (2022) Update on pathogenesis of glomerular hyperfiltration in early diabetic kidney disease. Front. Endocrinol. 13, 872918.
- Yang, Y. L., Ji, C., Cheng, L., He, L., Lu, C. C., Wang, R. and Bi, Z. G. (2012) Sphingosine kinase-1 inhibition sensitizes curcumin-induced growth inhibition and apoptosis in ovarian cancer cells. Cancer Sci. 103, 1538-1545.
- Yang, Z. J., Wang, H. R., Wang, Y. I., Zhai, Z. H., Wang, L. W., Li, L., Zhang, C. and Tang, L. (2019) Myricetin attenuated diabetes-associated kidney injuries and dysfunction via regulating nuclear factor (erythroid derived 2)-like 2 and nuclear factor-κB signalling. Front. Pharmacol. 10, 647.
- Yao, M., Lian, D., Wu, M., Zhou, Y., Fang, Y., Zhang, S., Zhang, W., Yang, Y., Li, R., Chen, H., Chen, Y., Shen, A. and Peng, J. (2023) Isoliensinine attenuates renal fibrosis and inhibits TGF-β1/Smad2/3 signaling pathway in spontaneously hypertensive rats. Drug Des. Devel. Ther. 17, 2749-2762.
- Yi, X., Dong, M., Guo, N., Tian, J., Lei, P., Wang, S., Yang, Y. and Shi, Y. (2023) Flavonoids improve type 2 diabetes mellitus and its complications: a review. Front. Nutr. 10, 1192131.
- Yu, C., Wang, D., Yang, Z. and Wang, T. (2022) Pharmacological effects of polyphenol phytochemicals on the intestinal inflammation via targeting TLR4/NF-κB signaling pathway. Int. J. Mol. Sci. 23, 6939.
- Yu, L., Chen, Y. and Tooze, S. A. (2018) Autophagy pathway: cellular and molecular mechanisms. Autophagy 14, 207-215.
- Yu, X., Long, Y. C. and Shen, H. M. (2015) Differential regulatory functions of three classes of phosphatidylinositol and phosphoinositide 3-kinases in autophagy. Autophagy 11, 1711-1728.
- Yuan, T., Yang, T., Chen, H., Fu, D., Hu, Y., Wang, J., Yuan, Q., Yu, H., Xu, W. and Xie, X. (2019) New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 20, 247-260.
- Zabad, O. M., Samra, Y. A. and Eissa, L. A. (2019) P-coumaric acid alleviates experimental diabetic nephropathy through modulation of Toll like receptor-4 in rats. Life Sci. 238, 116965.
- Zakir, M., Ahuja, N., Surksha, M.A., Sachdev, R., Kalariya, Y., Nasir, M., Kashif, M., Shahzeen, F., Tayyab, A., Khan, M. S. M., Junejo, M., Manoj Kumar, F., Varrassi, G., Kumar, S., Khatri, M. and Mohamad, T. (2023) Cardiovascular complications of diabetes: from microvascular to macrovascular pathways. Cureus 15, e45835.
- Zhang, J., Yang, S., Li, H., Chen, F. and Shi, J. (2017) Naringin ameliorates diabetic nephropathy by inhibiting NADPH oxidase 4. Eur. J. Pharmacol. 804, 1-6.
- Zhao, L., Zou, Y. and Liu, F. (2020) Transforming growth factor-beta1 in diabetic kidney disease. Front. Cell. Dev. Biol. 8, 187.
- Zhao, W. M., Li, X. L., Zhu, Y., Shi, R., Wang, Z. J., Xiao, J. P. and Wang, D. G. (2024) Diosmin ameliorates renal fibrosis through inhibition of inflammation by regulating SIRT3-mediated NF-κB p65 nuclear translocation. BMC Complement. Med. Ther. 9, 29.
- Zhou, K., Zi, X., Song, J., Zhao, Q., Liu, J., Bao, H. and Li, L. (2022a) Molecular mechanistic pathways targeted by natural compounds in the prevention and treatment of diabetic kidney disease. Molecules 27, 6221.
- Zhou, Y., Tao, H., Xu, N., Zhou, S., Peng, Y., Zhu, J., Liu, S. and Chang, Y. (2022b) Chrysin improves diabetic nephropathy by regulating the AMPK-mediated lipid metabolism in HFD/STZ-induced DN mice. J. Food Biochem. 46, e14379.