DOI QR코드

DOI QR Code

Adaptive sliding sector controller for active tuned mass damper-equipped tall buildings considering soil-structure interaction

  • Saman Saadatfar (Department of civil engineering, Science and Research Branch, Islamic Azad University) ;
  • Fereshteh Emami (Department of civil engineering, Science and Research Branch, Islamic Azad University) ;
  • Mohsen Khatibinia (Department of Civil Engineering, University of Birjand) ;
  • Hussein Eliasi (Department of Electrical Engineering, University of Birjand)
  • 투고 : 2024.03.16
  • 심사 : 2024.11.25
  • 발행 : 2025.01.10

초록

Active tuned mass damper (ATMD) is widely adopted as a reliable active device to protect tall buildings subjected to earthquake excitations from severe seismic damages. Soil-structure interaction (SSI) phenomena effects on the free vibration characteristics and the seismic responses of tall structures. This study presents the design of an adaptive sliding sector controller (ASSC) for the active control of tall buildings equipped with an ATMD system considering the SSI effects. The ASSC technique is designed based on the hyper-surface of the sliding mode which is surrounded by a sector and can consider the uncertainty of system parameters. To validate the efficiency of the ASSC technique, its design is first implemented for a 40-story building equipped with an ATMD system under an artificial earthquake excitation for different soil types. Then, the performance of the designed ASSC technique is evaluated in mitigating the seismic responses of the structure subjected to five real earthquake excitations considering the SSI effects. In addition, the efficiency of the designed ASSC strategy is compared against that of the two controller techniques including proportional-integral-derivative (PID) and linear-quadratic regulator (LQR). Comparative results demonstrate the efficiency of the ASSC strategy for the reduction of the structural responses under real earthquake excitations.

키워드

참고문헌

  1. Alavinasab, A., Moharrami, H. and Khajepour, A. (2006), "Active control of structures using energy‐based LQR method", Comput. Aided Civ. Infrastruct. Eng., 21, 605-611. https://doi.org/10.1111/j.1467-8667.2006.00460.x.
  2. Banaei, A. and Alamatian, J. (2021), "New genetic algorithm for structural active control by considering the effect of time delay", J. Vib. Control. 27, 743-758. https://doi.org/10.1177/1077546320933467.
  3. Banks, S.P., Salamci, M.U. and McCaffrey, D. (2000), "Non-local stabilization of nonlinear systems using switching manifolds", Int. J. Syst. Sci., 31: 243-254. https://doi.org/10.1080/002077200291352.
  4. Bartolini, G., Pisano. A. and Usai, E. (1998), "Digital second order sliding mode control of SISO uncertain nonlinear systems", Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No. 98CH36207), Philadelphia, June.
  5. Chen, H., Sun, Z. and Sun, L. (2011), "Active mass damper control for cable stayed bridge under construction: an experimental study", Struct. Eng. Mech., 38, 141-156. https://doi.org/10.12989/sem.2011.38.2.141.
  6. Chen, Z.Y., Wang, R.Y., Meng, Y. and Chen, T. (2023), "Smart modified repetitive-control design for nonlinear structure with tuned mass damper", Steel. Compos. Struct., 46(1), 107-114. DOI: https://doi.org/10.12989/scs.2023.46.1.107.
  7. Collins, R., Basu, B. and Broderick B. (2006), "Control strategy using bang–bang and minimax principle for FRF with ATMDs", Eng. Struct., 28: 349-356. https://doi.org/10.1016/j.engstruct.2005.08.012.
  8. Elias, S. and Matsagar, V. (2017), "Research developments in vibration control of structures using passive tuned mass dampers", Annu. Rev. Control., 44, 129-156. https://doi.org/10.1016/j.arcontrol.2017.09.015.
  9. Eliasi, H., Yazdani, H., Khatibinia, M. and Mahmoudi, M. (2022), "Optimum design of a sliding mode control for seismic mitigation of structures equipped with active tuned mass dampers", Struct. Eng. Mech., 81, 633-645. https://doi.org/10.12989/sem.2022.81.5.633.
  10. Etedali, S. and Tavakoli, S. (2017), "PD/PID controller design for seismic control of high-rise buildings using multi-objective optimization: A comparative study with LQR controller", J. Earthq. Tsunami., 11, 1750009. https://doi.org/10.1142/S1793431117500099.
  11. Etedali, S., Zamani, A.A. and Tavakoli, S. (2018), "A GBMO-based PIλDμ controller for vibration mitigation of seismic excited structures", Autom. Constr., 87, 1-12. https://doi.org/10.1016/j.autcon.2017.12.005.
  12. Farshidianfar, A. and Soheili, S. (2013), "Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil–structure interaction", Soil Dyn. Earthq. Eng., 51, 14-22. https://doi.org/10.1016/j.soildyn.2013.04.002.
  13. Furuta, K. and Pan, Y. (1999), "Variable structure control of continuous-time system with sliding sector", IFAC Proceedings, 32, 2564-2569. https://doi.org/10.1016/S1474-6670(17)56436-8.
  14. Furuta, K. and Pan, Y. (2000), "Variable structure control with sliding sector", Automatica., 36, 211-228. https://doi.org/10.1016/S0005-1098(99)00116-8.
  15. Guclu, R. (2006), "Sliding mode and PID control of a structural system against earthquake", Math. Comput. Model., 44, 210-217. https://doi.org/10.1016/j.mcm.2006.01.014.
  16. Guclu, R. and Yazici, H. (2009), "Seismic-vibration mitigation of a nonlinear structural system with an ATMD through a fuzzy PID controller", Nonlinear. Dyn., 58: 553-564. https://doi.org/10.1007/s11071-009-9500-5.
  17. Hosseini Lavassani, S.H. and Shangapour, S. (2022), "Interval type-2 fuzzy hybrid control of a high-rise building including soil–structure interaction under near-field and far-field ground motions", Struct. Eng. Int., 32: 316-327. https://doi.org/10.1080/10168664.2020.1838249.
  18. Hosseini Lavassani, S.H., Shangapour, S., Homami, P., Gharehbaghi, V., Noroozinejad Farsangi, E. and Yang, T.Y. (2022), "An innovative methodology for hybrid vibration control (MR+TMD) of buildings under seismic excitations", Soil. Dyn. Earthq. Eng., 155, 107175. https://doi.org/10.1016/j.soildyn.2022.107175.
  19. Huo, L., Song, G., Li, H. and Grigoriadis, K. (2007), "Robust control design of active structural vibration suppression using an active mass damper", Smart. Mater. Struct., 17, 015021. https://doi.org/10.1088/0964-1726/17/01/015021.
  20. Iwase, M. and Furuta, K. (2020), "Sliding sector control using new equivalent sector control", Inter. J. Cont., 93, 238-251. https://doi.org/10.1080/00207179.2019.1626993.
  21. Jarrahi, H., Asadi, A., Khatibinia., M., Etedali, S. and Paknehad, S. (2022), "Soil-structure interaction effects on the seismic performance of steel moment-resisting frames equipped with optimal rotational friction dampers", Structures, 43, 449-464. https://doi.org/10.1016/j.istruc.2022.05.118
  22. Kachroo, P. and Tomizuka, M. (1996), "Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems", IEEE. Trans. Autom. Control., 41, 1063-1068. https://doi.org/10.1109/9.508917.
  23. Kamgar, R., Khatibinia, M. and Khatibinia, M. (2019), "Optimization criteria for design of tuned mass dampers including soil-structure interaction effects", Int. J. Optim. Civil Eng. 9, 213-232. http://ijoce.iust.ac.ir/article-1-385-en.html.
  24. Kanai, K. (1961), "An empirical formula for the spectrum of strong earthquake motion", Bull. Earthq. Res. Inst., 39. 85-95. https://gbank.gsj.jp/ld/resource/geolis/196300709.
  25. Katebi, J. and Zamen, S. (2018), "Robust time varying sliding sector for uncertain structures control", J. Vib. Cont., 24, 171-190. https://doi.org/10.1177/1077546316636540.
  26. Khatibinia, M., Gholami, H. and Labbafi, S. (2016), "Mutil-objective optimization of tuned mass dampers considering soil-structure interaction effects", Int. J. Optim. Civil. Eng., 6, 595-610. http://ijoce.iust.ac.ir/article-1-275-fa.html.
  27. Khatibinia, M., Jalaipour, M. and Gharehbaghi, S. (2019), "Shape optimization of U-shaped steel dampers subjected to cyclic loading using an efficient hybrid approach", Eng. Struct., 197, 108874. https://doi.org/10.1016/j.engstruct.2019.02.005.
  28. Khatibinia, M., Fadaee, M., Salajegheh, J. and Salajegheh, E. (2013), "Seismic reliability assessment of RC structures including soil–structure interaction using wavelet weighted least squares support vector machine", Reliab. Eng. Syst. Saf., 110, 22-33. https://doi.org/10.1016/j.ress.2012.09.006.
  29. Khatibinia, M., Mahmoudi, M. and Eliasi, H. (2020), "Optimal sliding mode control for seismic control of buildings equipped with ATMD", Int. J. Optim. Civil Eng., 10, 1-15. http://ijoce.iust.ac.ir/article-1-417-en.html.
  30. Lee, S.K., Lee, S.H., Min, K.W., Moon, B.W., Youn, K.J. and Hwang, J. (2009), "Performance evaluation of an MR damper in building structures considering soil-structure interaction effects", Struct. Des. Tall Spec. Build., 18, 105-115. https://doi.org/10.1002/tal.430.
  31. Li, C., Yu, Z., Xiong, X. and Wang, C. (2010), "Active multiple tuned mass dampers for asymmetric structures considering soil–structure interaction", Struct. Control. Health. Monit., 17, 452-472. https://doi.org/10.1002/stc.326.
  32. Li, Q., Liu, D., Tang, J., Zhang, N. and Tam, C. (2004), "Combinatorial optimal design of number and positions of actuators in actively controlled structures using genetic algorithms", J. Sound. Vib., 270, 611-624. https://doi.org/10.1016/S0022-460X(03)00130-5.
  33. Lim, C.W. (2008), "Active vibration control of the linear structure with an active mass damper applying robust saturation controller", Mechatronics, 18, 391-399. https://doi.org/10.1016/j.mechatronics.2008.06.006.
  34. Lin, C.C., Chang, C.C. and Wang, J.F. (2010), "Active control of irregular buildings considering soil–structure interaction effects", Soil. Dyn. Earthq. Eng., 30, 98-109. https://doi.org/10.1016/j.soildyn.2009.09.005.
  35. Liu, M.Y., Chiang, W.L., Hwang, J.H. and Chu, C.R. (2008), "Wind-induced vibration of high-rise building with tuned mass damper including soil–structure interaction", J. Wind Eng. Ind. Aerod., 96, 1092-1102. https://doi.org/10.1016/j.jweia.2007.06.034.
  36. Monajemi‐Nezhad, S. and Rofooei, F. (2007), "Decentralized sliding mode control of multistory buildings", Struct. Des. Tall Spec. Build., 16, 181-204. https://doi.org/10.1002/tal.310.
  37. Navi, B.R., Mohammadimehr, M. and Arani, A.G. (2019), "Active control of three-phase CNT/resin/fiber piezoelectric polymeric nanocomposite porous sandwich microbeam based on sinusoidal shear deformation theory", Steel. Compos. Struct. 32(6), 753-767. https://doi.org/10.12989/scs.2019.32.6.753.
  38. Nazarimofrad, E. and Zahrai, S.M. (2016), "Seismic control of irregular multistory buildings using active tendons considering soil–structure interaction effect", Soil. Dyn. Earthq. Eng., 89, 100-115. https://doi.org/10.1016/j.soildyn.2016.07.005.
  39. Ozcan, S., Salamci, M.U. and Nalbantoglu, V. (2020), "Nonlinear sliding sector design for multi-input systems with application to helicopter control", Int. J. Robust. Nonlinear. Control, 30, 2248- 2291. https://doi.org/10.1002/rnc.4877.
  40. Ozturk, B., Cetin, H. and Aydin, E. (2022), "Optimum vertical location and design of multiple tuned mass dampers under seismic excitations", Structures, 41, 1141-1163. https://doi.org/10.1016/j.istruc.2022.05.014.
  41. Pan, Y. and Furuta, K. (1996), "Adaptive VSS controller based on sliding sector", IFAC. Proceedings, 29, 2633-2638. https://doi.org/10.1016/S1474-6670(17)58072-6.
  42. Park, S., Lee, J., Jung, H.J., Jang, D.D. and Kim, S. (2009), "Numerical and experimental investigation of control performance of active mass damper system to high-rise building in use", Wind. Struct. 12, 313-332. https://doi.org/10.12989/was.2009.12.4.313.
  43. Pourzeynali, S., Lavasani, H. and Modarayi, A. (2007), "Active control of high rise building structures using fuzzy logic and genetic algorithms", Eng. Struct., 29, 346-357. https://doi.org/10.1016/j.engstruct.2006.04.015.
  44. Ricciardelli, F., Pizzimenti, A.D. and Mattei, M. (2003), "Passive and active mass damper control of the response of tall buildings to wind gustiness", Eng. Struct. 25, 1199-1209. https://doi.org/10.1016/S0141-0296(03)00068-3.
  45. Samali, B., Al-Dawod, M., Kwok, K. and Naghdy, F. (2004), "Active control of cross wind response of 76-story tall building using a fuzzy controller", J. Eng. Mech., 130(4). https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(49).
  46. Shahi, M., Sohrabi, M.R. and Etedali, S. (2018), "Seismic control of high-rise buildings equipped with ATMD including soil-structure interaction effects", J. Earth. Tsunami., 12, 1850010. https://doi.org/10.1142/S1793431118500100.
  47. Shariatmadar, H., Golnargesi S. and Akbarzadeh, T. (2014), "Vibration control of buildings using ATMD against earthquake excitations through interval type-2 fuzzy logic controller", Asian. J. Civ. Eng., 15, 321-338. hrc.ac.ir/ajce/Volumes-Issues/agentType/View/PropertyID/5866.
  48. Sharma, N.K. and Janardhanan, S. (2017), "Optimal discrete higher-order sliding mode control of uncertain LTI systems with partial state information", Inter. J. Robust. Nonlin., 27, 4104-4115. https://doi.org/10.1002/rnc.3785.
  49. Shi, W., Shan, J. and Lu, X. (2012), "Modal identification of Shanghai World Financial Center both from free and ambient vibration response", Eng. Struct., 36, 14-26. https://doi.org/10.1016/j.engstruct.2011.11.025.
  50. Tajimi, H. (1960), "Statistical Method of Determining the Maximum Response of Building Structure During an Earthquake", Proceedings of the 2nd World Conference on Earthquake Engineering, Tokio.
  51. Ümütlü, R.C., Ozturk, H. and Bidikli, B. (2021), "A robust adaptive control design for active tuned mass damper systems of multistory buildings", J. Vib. Control, 27, 2765-2777. https://doi.org/10.1177/1077546320966236.
  52. Wang, A.P. and Lin, Y.H. (2007), "Vibration control of a tall building subjected to earthquake excitation", J. Sound. Vib., 299, 757-773. https://doi.org/10.1016/j.jsv.2006.07.016.
  53. Wang, L., Shi, W. and Zhou, Y. (2022), "Adaptive-passive tuned mass damper for structural aseismic protection including soil–structure interaction", Soil. Dyn. Earthq. Eng., 158, 107298. https://doi.org/10.1016/j.soildyn.2022.107298.
  54. Yakut, O. and Alli, H. (2011), "Neural based sliding-mode control with moving sliding surface for the seismic isolation of structures", J. Vib. Control. 17, 2103-2116. https://doi.org/10.1177/1077546310395964.
  55. Yamamoto, M. and Sone, T. (2014), "Behavior of active mass damper (AMD) installed in high‐rise building during 2011 earthquake off Pacific coast of Tohoku and verification of regenerating system of AMD based on monitoring", Struct. Control. Health. Monit., 21, 634-647. https://doi.org/10.1002/stc.1590.
  56. Yang, S.M., Chen, C.J. and Huang, W.L. (2006), "Structural Vibration Suppression by a Neural-Network Controller with a Mass-Damper Actuator", J. Vib. Control, 12, 495-508. https://doi.org/10.1177/1077546306064269.
  57. Yazdani, H., Khatibinia, M., Gharehbaghi, S. and Hatami, K. (2017), "Probabilistic performance-based optimum seismic design of RC structures considering soil-structure interaction Effects", ASCE. ASME. J. Risk. Uncertain. Eng. Syst. A. Civ., 3, G4016004. https://doi.org/10.1061/AJRUA6.0000880.
  58. Zamani, A.A. and Etedali, S. (2021), "Optimal fractional-order PID control design for time-delayed multi-input multi-output seismic-excited structural system", J. Vib. Control, 29, 10775463211053188.https://doi.org/10.1177/10775463211053188.
  59. Zamani, A.A. and Etedali, S. (2022), "A new framework of multi objective BELBIC for seismic control of smart base-isolated structures equipped with MR dampers", Eng. Comput., 38, 3759- 3772. https://doi.org/10.1007/s00366-021-01414-7.
  60. Zamani, A.A. and Etedali, S. (2023), "Robust output feedbackbased neuro-fuzzy controller for seismically excited tall buildings with ATMD accounting for variations in the type of supporting soil", Soil. Dyn. Earthq. Eng., 164, 107614. https://doi.org/10.1016/j.soildyn.2022.107614
  61. Zhan, W., Cui, Y., Feng, Z., Cheung, K., Lam, J. and Gao, H. (2013), "Joint optimization approach to building vibration control via multiple active tuned mass dampers", Mechatronics. 23, 355-368. https://doi.org/10.1016/j.soildyn.2022.107614.
  62. Zhou, K., Li, Q.S. and Li, X. (2020), "Dynamic behavior of supertall building with active control system during Super Typhoon Mangkhut", J. Struct. Eng., 146, 04020077. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002626.