DOI QR코드

DOI QR Code

HARMONIC CURVATURE IN DIMENSION FOUR

  • Received : 2024.01.01
  • Accepted : 2024.08.14
  • Published : 2025.01.01

Abstract

We provide a step towards classifying Riemannian four-manifolds in which the curvature tensor has zero divergence, or - equivalently - the Ricci tensor Ric satisfies the Codazzi equation. Every known compact manifold of this type belongs to one of five otherwise-familiar classes of examples. The main result consists in showing that, if such a manifold (not necessarily compact or even complete) lies outside of the five classes - a non-vacuous assumption - then, at all points of a dense open subset, Ric has four distinct eigenvalues, while suitable local coordinates simultaneously diagonalize Ric, the metric and, in a natural sense, also the curvature tensor. Furthermore, in a local orthonormal frame formed by Ricci eigenvectors, the connection form (or, curvature tensor) has just twelve (or, respectively, six) possibly-nonzero components, which together satisfy a specific system, not depending on the point, of homogeneous polynomial equations. A part of the classification problem is thus reduced to a question in real algebraic geometry.

Keywords

Acknowledgement

Research supported in part by a FAPESP-OSU 2015 Regular Research Award (FAPESP grant: 2015/50265-6).

References

  1. T. Aubin, Le problème de Yamabe concernant la courbure scalaire, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), A721–A724.
  2. T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), no. 1, 63–95.
  3. A. L. Besse, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer, Berlin, 1987. https://doi.org/10.1007/978-3-540-74311-8
  4. J.-P. Bourguignon, Les variétés de dimension 4 à signature non nulle dont la courbureest harmonique sont d'Einstein, Invent. Math. 63 (1981), no. 2, 263–286. https://doi.org/10.1007/BF01393878
  5. X. Chen, C. LeBrun, and B. Weber, On conformally Kähler, Einstein manifolds, J. Amer. Math. Soc. 21 (2008), no. 4, 1137–1168. https://doi.org/10.1090/S0894-0347-08-00594-8
  6. A. Derdziński, Classification of certain compact Riemannian manifolds with harmonic curvature and nonparallel Ricci tensor, Math. Z. 172 (1980), no. 3, 273–280. https://doi.org/10.1007/BF01215090
  7. A. Derdziński, Riemannian metrics with harmonic curvature on 2-sphere bundles over compact surfaces, Bull. Soc. Math. France 116 (1988), no. 2, 133–156. http://www.numdam.org/item?id=BSMF_1988__116_2_133_0
  8. A. Derdzinski and P. Piccione, Maximally-warped metrics with harmonic curvature, Proceedings of the AMS Special Session on Geometry of Submanifolds, ed. by J. Van der Veken, A. Carriazo, I. Dimitric, Y.-M. Oh, B. Suceava, and L. Vrancken, Contemp. Math. 756, AMS, Providence, RI, 2020, pp. 83–96.
  9. A. Derdziński and C.-L. Shen, Codazzi tensor fields, curvature and Pontryagin forms, Proc. London Math. Soc. (3) 47 (1983), no. 1, 15–26. https://doi.org/10.1112/plms/s3-47.1.15
  10. D. DeTurck and H. Goldschmidt, Regularity theorems in Riemannian geometry. II. Harmonic curvature and the Weyl tensor, Forum Math. 1 (1989), no. 4, 377–394. https://doi.org/10.1515/form.1989.1.377
  11. N. H. Kuiper, On conformally-flat spaces in the large, Ann. of Math. (2) 50 (1949), 916–924. https://doi.org/10.2307/1969587
  12. H. Maillot, Sur les variétés riemanniennes à opérateur de courbure pur, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1127–1130.
  13. Y. Matsushima, Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne, Nagoya Math. J. 11 (1957), 145–150. http://projecteuclid.org/euclid.nmj/1118799867
  14. D. Page, A compact rotating gravitational instanton, Phys. Lett. 79B (1978), no. 3, 235–238.
  15. R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), no. 2, 479–495. http://projecteuclid.org/euclid.jdg/1214439291
  16. I. M. Singer and J. A. Thorpe, The curvature of 4-dimensional Einstein spaces, Global Analysis (Papers in Honor of K. Kodaira), 355–365, Univ. Tokyo Press, Tokyo, 1969.
  17. G. Tian, On Calabi's conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), no. 1, 101–172. https://doi.org/10.1007/BF01231499
  18. K. P. Tod, On choosing coordinates to diagonalize the metric, Classical Quantum Gravity 9 (1992), no. 7, 1693–1705. http://stacks.iop.org/0264-9381/9/1693
  19. S.-T. Yau, Remarks on conformal transformations, J. Differential Geometry 8 (1973), 369-381. http://projecteuclid.org/euclid.jdg/1214431798
  20. S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411. https://doi.org/10.1002/cpa.3160310304