Acknowledgement
Research supported in part by a FAPESP-OSU 2015 Regular Research Award (FAPESP grant: 2015/50265-6).
References
- T. Aubin, Le problème de Yamabe concernant la courbure scalaire, C. R. Acad. Sci. Paris Sér. A-B 280 (1975), A721–A724.
- T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), no. 1, 63–95.
- A. L. Besse, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 10, Springer, Berlin, 1987. https://doi.org/10.1007/978-3-540-74311-8
- J.-P. Bourguignon, Les variétés de dimension 4 à signature non nulle dont la courbureest harmonique sont d'Einstein, Invent. Math. 63 (1981), no. 2, 263–286. https://doi.org/10.1007/BF01393878
- X. Chen, C. LeBrun, and B. Weber, On conformally Kähler, Einstein manifolds, J. Amer. Math. Soc. 21 (2008), no. 4, 1137–1168. https://doi.org/10.1090/S0894-0347-08-00594-8
- A. Derdziński, Classification of certain compact Riemannian manifolds with harmonic curvature and nonparallel Ricci tensor, Math. Z. 172 (1980), no. 3, 273–280. https://doi.org/10.1007/BF01215090
- A. Derdziński, Riemannian metrics with harmonic curvature on 2-sphere bundles over compact surfaces, Bull. Soc. Math. France 116 (1988), no. 2, 133–156. http://www.numdam.org/item?id=BSMF_1988__116_2_133_0
- A. Derdzinski and P. Piccione, Maximally-warped metrics with harmonic curvature, Proceedings of the AMS Special Session on Geometry of Submanifolds, ed. by J. Van der Veken, A. Carriazo, I. Dimitric, Y.-M. Oh, B. Suceava, and L. Vrancken, Contemp. Math. 756, AMS, Providence, RI, 2020, pp. 83–96.
- A. Derdziński and C.-L. Shen, Codazzi tensor fields, curvature and Pontryagin forms, Proc. London Math. Soc. (3) 47 (1983), no. 1, 15–26. https://doi.org/10.1112/plms/s3-47.1.15
- D. DeTurck and H. Goldschmidt, Regularity theorems in Riemannian geometry. II. Harmonic curvature and the Weyl tensor, Forum Math. 1 (1989), no. 4, 377–394. https://doi.org/10.1515/form.1989.1.377
- N. H. Kuiper, On conformally-flat spaces in the large, Ann. of Math. (2) 50 (1949), 916–924. https://doi.org/10.2307/1969587
- H. Maillot, Sur les variétés riemanniennes à opérateur de courbure pur, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1127–1130.
- Y. Matsushima, Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne, Nagoya Math. J. 11 (1957), 145–150. http://projecteuclid.org/euclid.nmj/1118799867
- D. Page, A compact rotating gravitational instanton, Phys. Lett. 79B (1978), no. 3, 235–238.
- R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), no. 2, 479–495. http://projecteuclid.org/euclid.jdg/1214439291
- I. M. Singer and J. A. Thorpe, The curvature of 4-dimensional Einstein spaces, Global Analysis (Papers in Honor of K. Kodaira), 355–365, Univ. Tokyo Press, Tokyo, 1969.
- G. Tian, On Calabi's conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), no. 1, 101–172. https://doi.org/10.1007/BF01231499
- K. P. Tod, On choosing coordinates to diagonalize the metric, Classical Quantum Gravity 9 (1992), no. 7, 1693–1705. http://stacks.iop.org/0264-9381/9/1693
- S.-T. Yau, Remarks on conformal transformations, J. Differential Geometry 8 (1973), 369-381. http://projecteuclid.org/euclid.jdg/1214431798
- S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411. https://doi.org/10.1002/cpa.3160310304