Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2021R1F1A1050243).
References
- D. Boffi, J. Guzmán, and M. Neilan, Convergence of Lagrange finite elements for the Maxwell eigenvalue problem in two dimensions, IMA J. Numer. Anal. 43 (2023), no. 2, 663-691. https://doi.org/10.1093/imanum/drab104
- A. Bonito, J.-L. Guermond, and F. Luddens, Regularity of the Marwell equations in heterogeneous media and Lipschitz domains, J. Math. Anal. Appl. 408 (2013), no. 2, 498-512. https://doi.org/10.1016/j.jmaa.2013.06.018
- S. C. Brenner, Two-level additive Schwarz preconditioners for nonconforming finite element methods, Math. Comp. 65 (1996), no. 215, 897–921. https://doi.org/10.1090/S0025-5718-96-00746-6
- S. C. Brenner, Convergence of nonconforming multigrid methods without full elliptic regularity, Math. Comp. 68 (1999), no. 225, 25–53. https://doi.org/10.1090/S0025-5718-99-01035-2
- S. C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306–324. https://doi.org/10.1137/S0036142902401311
- S. C. Brenner, J. Cui, Z. Nan, and L. Sung, Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell's equations, Math. Comp. 81 (2012), no. 278, 643–659. https://doi.org/10.1090/S0025-5718-2011-02540-8
- S. C. Brenner, F. Li, and L.-Y. Sung, A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations, Math. Comp. 76 (2007), no. 258, 573–595. https://doi.org/10.1090/S0025-5718-06-01950-8
- S. C. Brenner, F. Li, and L.-Y. Sung, A locally divergence-free interior penalty method for two-dimensional curl-curl problems, SIAM J. Numer. Anal. 46 (2008), no. 3, 1190–1211. https://doi.org/10.1137/060671760
- S. C. Brenner and L.-Y. Sung, A quadratic nonconforming vector finite element for H(curl; Ω) ∩H(div; Ω), Appl. Math. Lett. 22 (2009), no. 6, 892–896.
- C. Carstensen, A. K. Dond, N. Nataraj, and A. K. Pani, Error analysis of nonconforming and mixed FEMs for second-order linear non-selfadjoint and indefinite elliptic problems, Numer. Math. 133 (2016), no. 3, 557–597. https://doi.org/10.1007/s00211-015-0755-0
- C. Carstensen and R. H. W. Hoppe, Convergence analysis of an adaptive edge finite element method for the 2D eddy current equations, J. Numer. Math. 13 (2005), no. 1, 19–32. https://doi.org/10.1163/1569395054069017
- S.-H. Chou, D. Y. Kwak, and K. Y. Kim, Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems, Math. Comp. 72 (2003), no. 242, 525–539. https://doi.org/10.1090/S0025-5718-02-01426-6
- B. Courbet and J.-P. Croisille, Finite volume box schemes on triangular meshes, RAIRO Modél. Math. Anal. Numér. 32 (1998), no. 5, 631–649. https://doi.org/10.1051/m2an/1998320506311
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, R.A.I.R.O. 7 (1973), no. R-3, 33–75.
- T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comp. 79 (2010), no. 272, 2169–2189. https://doi.org/10.1090/S0025-5718-10-02360-4
- P. Hansbo and T. Rylander, A linear nonconforming finite element method for Maxwell's equations in two dimensions. Part I: frequency domain, J. Comput. Phys. 229 (2010), no. 18, 6534–6547. https://doi.org/10.1016/j.jcp.2010.05.009
- R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer. 11 (2002), 237–339. https://doi.org/10.1017/S0962492902000041
- P. Houston, I. Perugia, A. Schneebeli, and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations, Numer. Math. 100 (2005), no. 3, 485–518. https://doi.org/10.1007/s00211-005-0604-7
- P. Houston, I. Perugia, A. Schneebeli, and D. Schötzau, Miced discontinuous Galerkin approximation of the Maxwell operator: the indefinite case, M2AN Math. Model. Numer. Anal. 39 (2005), no. 4, 727-753. https://doi.org/10.1051/m2an:2005032
- D. Y. Kwak, A new class of higher order miced finite volume methods for elliptic problems, SIAM J. Numer. Anal. 50 (2012), no. 4, 1941-1958. https://doi.org/10.1137/100812446
- J. Li, Y. Huang, and W. Yang, An adaptive edge finite element method for electromagnetic cloaking simulation, J. Comput. Phys. 249 (2013), 216–232. https://doi.org/10.1016/j.jcp.2013.04.026
- J.-M. Mirebeau, Nonconforming vector finite elements for H(curl; Ω)∩H(div; Ω), Appl. Math. Lett. 25 (2012), no. 3, 369–373.
- P. Monk, A finite element method for approximating the time-harmonic Maxwell equations, Numer. Math. 63 (1992), no. 2, 243–261. https://doi.org/10.1007/BF01385860
- P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation, Oxford Univ. Press, New York, 2003. https://doi.org/10.1093/acprof:oso/9780198508885.001.0001
- P. Monk, A simple proof of convergence for an edge element discretization of Maxwell's equations, Computational electromagnetics (Kiel, 2001), 127–141, Lect. Notes Comput. Sci. Eng., 28, Springer, Berlin, 2003. https://doi.org/10.1007/978-3-642-55745-3_9
- J. C. Nédélec, Mixed finite elements in R3, Numer. Math. 35 (1980), no. 3, 315–341. https://doi.org/10.1007/BF01396415
- J. C. Nédélec, A new family of mixed finite elements in R3, Numer. Math. 50 (1986), no. 1, 57–81. https://doi.org/10.1007/BF01389668
- N. C. Nguyen, J. Peraire, and B. Cockburn, Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations, J. Comput. Phys. 230 (2011), no. 19, 7151–7175. https://doi.org/10.1016/j.jcp.2011.05.018
- I. Perugia, D. Schötzau, and P. Monk, Stabilized interior penalty methods for the time-harmonic Maxwell equations, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 41-42, 4675–4697. https://doi.org/10.1016/S0045-7825(02)00399-7
- A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974), 959–962. https://doi.org/10.2307/2005357
- A. H. Schatz and J. Wang, Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions, Math. Comp. 65 (1996), no. 213, 19–27. https://doi.org/10.1090/S0025-5718-96-00649-7
- L. Zhong, S. Shu, G. Wittum, and J. Xu, Optimal error estimates for Nedelec edge elements for time-harmonic Maxuell's equations, J. Comput. Math. 27 (2009), no. 5, 563-572. https://doi.org/10.4208/jcm.2009.27.5.011