DOI QR코드

DOI QR Code

MIXED FINITE VOLUME METHOD FOR TWO-DIMENSIONAL MAXWELL'S EQUATIONS

  • Kwang-Yeon Kim (Department of Mathematics Kangwon National University) ;
  • Do Young Kwak (Department of Mathematical Sciences Korea Advanced Institute of Science and Technology)
  • Received : 2023.11.06
  • Accepted : 2024.05.27
  • Published : 2025.01.01

Abstract

We propose and analyze a mixed finite volume method for the two-dimensional time-harmonic Maxwell's equations which simultaneously approximates the vector field 𝒖 and the scalar function ξ = µ-1 curl 𝒖. The method chooses the lowest-order Nédélec edge element for u and the P1 Crouzeix-Raviart nonconforming element for ξ on triangular meshes. It is shown that the method is reduced to a modified P1 nonconforming FEM for ξ or a modified edge element method for 𝒖 by eliminating the discrete variable of 𝒖 or ξ. After solving the reduced method, the eliminated discrete variable can be recovered from the other one via a simple local formula. Using this feature, we also derive optimal a priori error estimates under weak regularity assumptions and show that the approximation to ξ has a higher-order of convergence in the L2 norm than the one obtained by direct differentiation of the approximation to 𝒖 when the exact solution is sufficiently smooth.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2021R1F1A1050243).

References

  1. D. Boffi, J. Guzmán, and M. Neilan, Convergence of Lagrange finite elements for the Maxwell eigenvalue problem in two dimensions, IMA J. Numer. Anal. 43 (2023), no. 2, 663-691. https://doi.org/10.1093/imanum/drab104
  2. A. Bonito, J.-L. Guermond, and F. Luddens, Regularity of the Marwell equations in heterogeneous media and Lipschitz domains, J. Math. Anal. Appl. 408 (2013), no. 2, 498-512. https://doi.org/10.1016/j.jmaa.2013.06.018
  3. S. C. Brenner, Two-level additive Schwarz preconditioners for nonconforming finite element methods, Math. Comp. 65 (1996), no. 215, 897–921. https://doi.org/10.1090/S0025-5718-96-00746-6
  4. S. C. Brenner, Convergence of nonconforming multigrid methods without full elliptic regularity, Math. Comp. 68 (1999), no. 225, 25–53. https://doi.org/10.1090/S0025-5718-99-01035-2
  5. S. C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306–324. https://doi.org/10.1137/S0036142902401311
  6. S. C. Brenner, J. Cui, Z. Nan, and L. Sung, Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell's equations, Math. Comp. 81 (2012), no. 278, 643–659. https://doi.org/10.1090/S0025-5718-2011-02540-8
  7. S. C. Brenner, F. Li, and L.-Y. Sung, A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations, Math. Comp. 76 (2007), no. 258, 573–595. https://doi.org/10.1090/S0025-5718-06-01950-8
  8. S. C. Brenner, F. Li, and L.-Y. Sung, A locally divergence-free interior penalty method for two-dimensional curl-curl problems, SIAM J. Numer. Anal. 46 (2008), no. 3, 1190–1211. https://doi.org/10.1137/060671760
  9. S. C. Brenner and L.-Y. Sung, A quadratic nonconforming vector finite element for H(curl; Ω) ∩H(div; Ω), Appl. Math. Lett. 22 (2009), no. 6, 892–896.
  10. C. Carstensen, A. K. Dond, N. Nataraj, and A. K. Pani, Error analysis of nonconforming and mixed FEMs for second-order linear non-selfadjoint and indefinite elliptic problems, Numer. Math. 133 (2016), no. 3, 557–597. https://doi.org/10.1007/s00211-015-0755-0
  11. C. Carstensen and R. H. W. Hoppe, Convergence analysis of an adaptive edge finite element method for the 2D eddy current equations, J. Numer. Math. 13 (2005), no. 1, 19–32. https://doi.org/10.1163/1569395054069017
  12. S.-H. Chou, D. Y. Kwak, and K. Y. Kim, Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems, Math. Comp. 72 (2003), no. 242, 525–539. https://doi.org/10.1090/S0025-5718-02-01426-6
  13. B. Courbet and J.-P. Croisille, Finite volume box schemes on triangular meshes, RAIRO Modél. Math. Anal. Numér. 32 (1998), no. 5, 631–649. https://doi.org/10.1051/m2an/1998320506311
  14. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, R.A.I.R.O. 7 (1973), no. R-3, 33–75.
  15. T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comp. 79 (2010), no. 272, 2169–2189. https://doi.org/10.1090/S0025-5718-10-02360-4
  16. P. Hansbo and T. Rylander, A linear nonconforming finite element method for Maxwell's equations in two dimensions. Part I: frequency domain, J. Comput. Phys. 229 (2010), no. 18, 6534–6547. https://doi.org/10.1016/j.jcp.2010.05.009
  17. R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer. 11 (2002), 237–339. https://doi.org/10.1017/S0962492902000041
  18. P. Houston, I. Perugia, A. Schneebeli, and D. Schtzau, Interior penalty method for the indefinite time-harmonic Maxwell equations, Numer. Math. 100 (2005), no. 3, 485–518. https://doi.org/10.1007/s00211-005-0604-7
  19. P. Houston, I. Perugia, A. Schneebeli, and D. Schötzau, Miced discontinuous Galerkin approximation of the Maxwell operator: the indefinite case, M2AN Math. Model. Numer. Anal. 39 (2005), no. 4, 727-753. https://doi.org/10.1051/m2an:2005032
  20. D. Y. Kwak, A new class of higher order miced finite volume methods for elliptic problems, SIAM J. Numer. Anal. 50 (2012), no. 4, 1941-1958. https://doi.org/10.1137/100812446
  21. J. Li, Y. Huang, and W. Yang, An adaptive edge finite element method for electromagnetic cloaking simulation, J. Comput. Phys. 249 (2013), 216–232. https://doi.org/10.1016/j.jcp.2013.04.026
  22. J.-M. Mirebeau, Nonconforming vector finite elements for H(curl; Ω)∩H(div; Ω), Appl. Math. Lett. 25 (2012), no. 3, 369–373.
  23. P. Monk, A finite element method for approximating the time-harmonic Maxwell equations, Numer. Math. 63 (1992), no. 2, 243–261. https://doi.org/10.1007/BF01385860
  24. P. Monk, Finite Element Methods for Maxwell's Equations, Numerical Mathematics and Scientific Computation, Oxford Univ. Press, New York, 2003. https://doi.org/10.1093/acprof:oso/9780198508885.001.0001
  25. P. Monk, A simple proof of convergence for an edge element discretization of Maxwell's equations, Computational electromagnetics (Kiel, 2001), 127–141, Lect. Notes Comput. Sci. Eng., 28, Springer, Berlin, 2003. https://doi.org/10.1007/978-3-642-55745-3_9
  26. J. C. Nédélec, Mixed finite elements in R3, Numer. Math. 35 (1980), no. 3, 315–341. https://doi.org/10.1007/BF01396415
  27. J. C. Nédélec, A new family of mixed finite elements in R3, Numer. Math. 50 (1986), no. 1, 57–81. https://doi.org/10.1007/BF01389668
  28. N. C. Nguyen, J. Peraire, and B. Cockburn, Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations, J. Comput. Phys. 230 (2011), no. 19, 7151–7175. https://doi.org/10.1016/j.jcp.2011.05.018
  29. I. Perugia, D. Schötzau, and P. Monk, Stabilized interior penalty methods for the time-harmonic Maxwell equations, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 41-42, 4675–4697. https://doi.org/10.1016/S0045-7825(02)00399-7
  30. A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974), 959–962. https://doi.org/10.2307/2005357
  31. A. H. Schatz and J. Wang, Some new error estimates for Ritz-Galerkin methods with minimal regularity assumptions, Math. Comp. 65 (1996), no. 213, 19–27. https://doi.org/10.1090/S0025-5718-96-00649-7
  32. L. Zhong, S. Shu, G. Wittum, and J. Xu, Optimal error estimates for Nedelec edge elements for time-harmonic Maxuell's equations, J. Comput. Math. 27 (2009), no. 5, 563-572. https://doi.org/10.4208/jcm.2009.27.5.011