Acknowledgement
This work was conducted as part of the requirements for the second author's doctoral degree. Financial support was provided by PRFU under Grant Agreement C00L03ES310120200001.
References
- W. Ambrose and I. M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647–669. http://projecteuclid.org/euclid.dmj/1077468199 1077468199
- W. Batat, G. Calvaruso, and B. De Leo, Homogeneous Lorentzian 3-manifolds with a parallel null vector field, Balkan J. Geom. Appl. 14 (2009), no. 1, 11–20.
- W. Batat, M. Castrillón López, and E. Rosado Maŕıa, Four-dimensional naturally reductive pseudo-Riemannian spaces, Differential Geom. Appl. 41 (2015), 48–64. https://doi.org/10.1016/j.difgeo.2015.04.004
- W. Batat, P. M. Gadea, and J. A. Oubiña, Homogeneous Riemannian structures on some solvable extensions of the Heisenberg group, Acta Math. Hungar. 138 (2013), no. 4, 341–364. https://doi.org/10.1007/s10474-012-0232-5
- N. Bokan, T. Šukilović, and S. Vukmirović, Lorentz geometry of 4-dimensional nilpotent Lie groups, Geom. Dedicata 177 (2015), 83–102. https://doi.org/10.1007/s10711-014-9980-4
- G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys. 57 (2007), no. 4, 1279–1291. https://doi.org/10.1016/j.geomphys.2006.10.005
- E. Calviño-Louzao, M. Ferreiro-Subrido, E. Garćıa-Ŕıo, and R. Vázquez-Lorenzo, Homogeneous Riemannian structures in dimension three, Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Mat. RACSAM 117 (2023), no. 2, Paper No. 70, 11 pp. https://doi.org/10.1007/s13398-023-01404-y
- M. E. Fels and A. G. Renner, Non-reductive homogeneous pseudo-Riemannian manifolds of dimension four, Canad. J. Math. 58 (2006), no. 2, 282–311. https://doi.org/10.4153/CJM-2006-012-1
- P. M. Gadea and J. A. Oubiña, Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures, Houston J. Math. 18 (1992), no. 3, 449–465.
- P. M. Gadea and J. A. Oubiña, Reductive homogeneous pseudo-Riemannian manifolds, Monatsh. Math. 124 (1997), no. 1, 17–34. https://doi.org/10.1007/BF01320735
- P. M. Gadea and J. A. Oubiña, Homogeneous Lorentzian structures on the oscillator groups, Arch. Math. (Basel) 73 (1999), no. 4, 311–320. https://doi.org/10.1007/s000130050403
- P. M. Gadea and J. A. Oubiña, Homogeneous Riemannian structures on Berger 3-spheres, Proc. Edinb. Math. Soc. 48 (2005), no.2, 375–387.
- C. S. Gordon, Naturally reductive homogeneous Riemannian manifolds, Canad. J. Math. 37 (1985), no. 3, 467–487. https://doi.org/10.4153/CJM-1985-028-2
- O. Kowalski and L. Vanhecke, Four-dimensional naturally reductive homogeneous spaces, Rend. Sem. Mat. Univ. Politec. Torino 1983 (1984), Special Issue, 223–232.
- O. Kowalski and L. Vanhecke, Classification of five-dimensional naturally reductive spaces, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 3, 445–463. https://doi.org/10.1017/S0305004100063027
- L. Magnin, Sur les algèbres de Lie nilpotentes de dimension ≤ 7, J. Geom. Phys. 3 (1986), no. 1, 119–144. https://doi.org/10.1016/0393-0440(86)90005-7
- R. Taleb and W. Batat, Homogeneous Lorentzian structures of 4-dimensional nilpotent Lie groups, Ann. Polon. Math. 131 (2023), no. 3, 263–294. https://doi.org/10.4064/ap221207-21-8
- F. Tricerri and L. Vanhecke, Homogeneous Structures on Riemannian Manifolds, London Mathematical Society Lecture Note Series, 83, Cambridge Univ. Press, Cambridge, 1983. https://doi.org/10.1017/CBO9781107325531