DOI QR코드

DOI QR Code

CLASSIFICATION OF HOMOGENEOUS STRUCTURES ON 4-DIMENSIONAL NILPOTENT LIE GROUPS

  • Wafaa Batat (Departement de la Formation Preparatoire en Sciences et Technologies Ecole Nationale Polytechnique d'Oran-Maurice Audin) ;
  • Rabea Taleb (Departement de la Formation Preparatoire en Sciences et Technologies Ecole Nationale Polytechnique d'Oran-Maurice Audin)
  • Received : 2023.11.03
  • Accepted : 2024.08.14
  • Published : 2025.01.01

Abstract

We determine, for all left-invariant Lorentzian metrics, the set of homogeneous structures on the four-dimensional 3-step nilpotent Lie group G4. Combined with the results of [17], this provides a complete classification of homogeneous structures on four-dimensional nilpotent Lie groups. As an application, we explore the distinct characteristics of each structure and demonstrate the existence of homogeneous structures that are not canonical. We then identify scenarios in which the metrics exhibit natural reductiveness, proving that a naturally reductive homogeneous structure can exist for left-invariant Lorentzian metrics admitting a parallel null vector on G4. This highlights a significant distinction between Riemannian and pseudo-Riemannian geometries, as Gordon's result [13] does not apply in the Lorentzian context, where the Lie group is not restricted to being 2-step nilpotent.

Keywords

Acknowledgement

This work was conducted as part of the requirements for the second author's doctoral degree. Financial support was provided by PRFU under Grant Agreement C00L03ES310120200001.

References

  1. W. Ambrose and I. M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647–669. http://projecteuclid.org/euclid.dmj/1077468199 1077468199
  2. W. Batat, G. Calvaruso, and B. De Leo, Homogeneous Lorentzian 3-manifolds with a parallel null vector field, Balkan J. Geom. Appl. 14 (2009), no. 1, 11–20.
  3. W. Batat, M. Castrillón López, and E. Rosado Maŕıa, Four-dimensional naturally reductive pseudo-Riemannian spaces, Differential Geom. Appl. 41 (2015), 48–64. https://doi.org/10.1016/j.difgeo.2015.04.004
  4. W. Batat, P. M. Gadea, and J. A. Oubiña, Homogeneous Riemannian structures on some solvable extensions of the Heisenberg group, Acta Math. Hungar. 138 (2013), no. 4, 341–364. https://doi.org/10.1007/s10474-012-0232-5
  5. N. Bokan, T. Šukilović, and S. Vukmirović, Lorentz geometry of 4-dimensional nilpotent Lie groups, Geom. Dedicata 177 (2015), 83–102. https://doi.org/10.1007/s10711-014-9980-4
  6. G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys. 57 (2007), no. 4, 1279–1291. https://doi.org/10.1016/j.geomphys.2006.10.005
  7. E. Calviño-Louzao, M. Ferreiro-Subrido, E. Garćıa-Ŕıo, and R. Vázquez-Lorenzo, Homogeneous Riemannian structures in dimension three, Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Mat. RACSAM 117 (2023), no. 2, Paper No. 70, 11 pp. https://doi.org/10.1007/s13398-023-01404-y
  8. M. E. Fels and A. G. Renner, Non-reductive homogeneous pseudo-Riemannian manifolds of dimension four, Canad. J. Math. 58 (2006), no. 2, 282–311. https://doi.org/10.4153/CJM-2006-012-1
  9. P. M. Gadea and J. A. Oubiña, Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures, Houston J. Math. 18 (1992), no. 3, 449–465.
  10. P. M. Gadea and J. A. Oubiña, Reductive homogeneous pseudo-Riemannian manifolds, Monatsh. Math. 124 (1997), no. 1, 17–34. https://doi.org/10.1007/BF01320735
  11. P. M. Gadea and J. A. Oubiña, Homogeneous Lorentzian structures on the oscillator groups, Arch. Math. (Basel) 73 (1999), no. 4, 311–320. https://doi.org/10.1007/s000130050403
  12. P. M. Gadea and J. A. Oubiña, Homogeneous Riemannian structures on Berger 3-spheres, Proc. Edinb. Math. Soc. 48 (2005), no.2, 375–387.
  13. C. S. Gordon, Naturally reductive homogeneous Riemannian manifolds, Canad. J. Math. 37 (1985), no. 3, 467–487. https://doi.org/10.4153/CJM-1985-028-2
  14. O. Kowalski and L. Vanhecke, Four-dimensional naturally reductive homogeneous spaces, Rend. Sem. Mat. Univ. Politec. Torino 1983 (1984), Special Issue, 223–232.
  15. O. Kowalski and L. Vanhecke, Classification of five-dimensional naturally reductive spaces, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 3, 445–463. https://doi.org/10.1017/S0305004100063027
  16. L. Magnin, Sur les algèbres de Lie nilpotentes de dimension ≤ 7, J. Geom. Phys. 3 (1986), no. 1, 119–144. https://doi.org/10.1016/0393-0440(86)90005-7
  17. R. Taleb and W. Batat, Homogeneous Lorentzian structures of 4-dimensional nilpotent Lie groups, Ann. Polon. Math. 131 (2023), no. 3, 263–294. https://doi.org/10.4064/ap221207-21-8
  18. F. Tricerri and L. Vanhecke, Homogeneous Structures on Riemannian Manifolds, London Mathematical Society Lecture Note Series, 83, Cambridge Univ. Press, Cambridge, 1983. https://doi.org/10.1017/CBO9781107325531