Acknowledgement
J.-H. J. and Y. K. are supported by the Basic Science Program of the NRF of Korea (NRF-2022R1C1C1010052). J.-H. J. participated the introductory school of AGATES in Warsaw (Poland) and thanks the organizers for providing a good research environment throughout the school. The authors thank Hyun-Min Kim for invaluable advice and constant encouragement. The authors also thank Kangjin Han and Hayoung Choi for helpful discussion. This research was performed using the high-performance server computer provided by Finance-Fishery-Manufacture Industrial Mathematics Center on Big Data (FFMIMC). We would like to express our appreciation for this support.
References
- M. Aharon, M. Elad, and A. Bruckstein, K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. Signal Process. 54 (2006), no. 11, 4311–4322.
- C. J. Appellof and E. R. Davidson, Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents, Anal. Chem. 53 (1981), no. 13, 2053–2056.
- S. Arora, R. Ge, T. Ma, and A. Moitra, Simple, efficient, and neural algorithms for sparse coding, Conference on learning theory, PMLR, (2015), 113–149.
- A. Bernardi, E. Carlini, M. V. Catalisano, A. Gimigliano, and A. Oneto, The hitchhiker guide to: Secant varieties and tensor decomposition, Mathematics 6 (2018), no. 12, 314.
- S. L. Brunton, J. L. Proctor, and J. Nathan Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA 113 (2016), no. 15, 3932–3937. https://doi.org/10.1073/pnas.1517384113
- S. L. Brunton, J. L. Proctor, and J. Nathan Kutz, Sparse identification of nonlinear dynamics with control (SINDYc), IFAC-PapersOnLine, 49 (2016), no. 18, 710–715.
- H. Derksen, On the nuclear norm and the singular value decomposition of tensors, Found. Comput. Math. 16 (2016), no. 3, 779–811. https://doi.org/10.1007/s10208-015-9264-x
- D. L. Donoho, For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution, Comm. Pure Appl. Math. 59 (2006), no. 6, 797–829. https://doi.org/10.1002/cpa.20132
- D. L. Donoho and M. Elad, Optimally sparse representation in general (nunorthogonal) dictionaries via l1 minimization, Proc. Natl. Acad. Sci. USA 100 (2003), no. 5, 2197-2202. https://doi.org/10.1073/pnas.0437847100
- G. Duan, H. Wang, Z. Liu, J. Deng, and Y. W. Chen, K-CPD: Learning of overcomplete dictionaries for tensor sparse coding, Proc. 21st Int. Conf. Pattern Recognit., IEEE, (2012), 493-496.
- K. Engan, K. Skretting, and J. H. Husøy, Family of iterative LS-based dictionary learning algorithms, ILS-DLA, for sparse signal representation, Digit. Signal Process. 17, (2007), no. 1, 32–49.
- A. Fawzi et al, Discovering faster matrix multiplication algorithms with reinforcement learning, Nature, 610 (2022), no. 7930, 47–53.
- R. A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multimodal factor analysis, UCLA Working Papers in Phonetics, 16 (1970), 1–84.
- F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, J. Math. Physics, 6 (1927), no. 1–4, 164–189.
- R. Houston, A. P. Goucher, and N. Johnston, A New formula for the determinant and bounds on its tensor and waring ranks, preprint.
- T. Jiang, Y. Shi, J. Zhang, and K. B. Letaief, Joint activity detection and channel estimation for IoT networks: Phase transition and computation-estimation tradeoff, IEEE Internet Things J. 6 (2018), no. 4, 6212–6225.
- G. Johns and Z. Teitler, An improved upper bound for the Waring rank of the determinant, J. Commut. Algebra 14 (2022), no. 3, 415–425. https://doi.org/10.1216/jca.2022.14.415
- J. H. Ju, T. Kim, and Y. Kim, A new formula of the determinant tensor with symmetries, preprint, 2023.
- E. Kaiser, J. N. Kutz, and S. L. Brunton, Sparse identification of nonlinear dynamics for model predictive control in the low-data limit, Proc. A. 474 (2018), no. 2219, 20180335, 25 pp. https://doi.org/10.1098/rspa.2018.0335
- T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev. 51 (2009), no. 3, 455–500. https://doi.org/10.1137/07070111X
- K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T. W. Lee, and T. J. Sejnowski, Dictionary learning algorithms for sparse representation, Neural Comput. 15 (2003), no. 2, 349–396.
- S. Krishna and V. Makam, On the tensor rank of the 3×3 permanent and determinant, Electron. J. Linear Algebra 37 (2021), 425–433.
- J. M. Landsberg, Tensors: Geometry and Applications, Graduate Studies in Mathematics, 128, Amer. Math. Soc., Providence, RI, 2012. https://doi.org/10.1090/gsm/128
- J. M. Landsberg, Geometry and Complexity Theory, Cambridge University Press, 2017.
- H. Lee, A. Battle, R. Raina, and A. Ng, Efficient sparse coding algorithms, Adv. Neural Inf. Process. Syst. 19, 2007.
- J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online learning for matrix factorization and sparse coding, J. Mach. Learn. Res. 11 (2010), 19–60.
- L. Qi and Z. Luo, Tensor Analysis, SIAM, Philadelphia, PA, 2017. https://doi.org/10.1137/1.9781611974751.ch1
- K. Ranestad and F.-O. Schreyer, On the rank of a symmetric form, J. Algebra 346 (2011), 340–342. https://doi.org/10.1016/j.jalgebra.2011.07.032
- P. Rodriguez, Fast convolutional sparse coding with l0 penalty, Proc. 2018 IEEE 25th Int. Conf. Electron. Electr. Eng. Comput. INTERCON 2018, (2018), 1–4.
- F. Santosa and W. W. Symes, Linear inversion of band-limited reflection seismograms, SIAM J. Sci. Statist. Comput. 7 (1986), no. 4, 1307–1330. https://doi.org/10.1137/0907087
- V. Strassen, Ganussian elimination is not optimal, Numer. Math. 13 (1969), 354-356. https://doi.org/10.1007/BF02165411
- R. J. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B 58 (1996), no. 1, 267-288.
- M. J. Wainwright, Structured regularizers for high-dimensional problems: Statistical and computational issues, Annu. Rev. Stat. Appl., 1, (2014), 233–253.
- J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan, Sparse representation for compute ruzston and pattern recognition, Proc. IEEE, 98 (2010), no. 6, 1031-1044.