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HARMONIC FUNCTIONS AND END NUMBERS ON

SMOOTH METRIC MEASURE SPACES
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Abstract. In this paper, we study properties of functions on smooth

metric measure space (M, g, e−fdv). We prove that any simply connected,
negatively curved smooth metric measure space with a small bound of

|∇f | admits a unique f -harmonic function for a given boundary value

at infinity. We also prove a sharp L2
f -decay estimate for a Schrödinger

equation under certain positive spectrum.

As applications, we discuss the number of ends on smooth metric
measure spaces. We show that the space with finite f -volume has a finite

number of ends when the Bakry-Émery Ricci tensor and the bottom of
Neumann spectrum satisfy some lower bounds. We also show that the

number of ends with infinite f -volume is finite when the Bakry-Émery
Ricci tensor is bounded below by certain positive spectrum. Finally we

study the dimension of the first L2
f -cohomology of the smooth metric

measure space.

1. Introduction

A smooth metric measure space (for short, SMMS), denoted by (M, g,
e−fdv), is a complete Riemann manifold (M, g) coupled with a weighted mea-
sure e−fdv for some weight function f and the Riemann volume element dv on
(M, g). SMMSs are natural extensions of Riemann manifolds and are charac-
terized by collapsed measured Gromov-Hausdorff limits [22]. On (M, g, e−fdv),
the f -Laplacian, self-adjoint with respect to e−fdv, is defined by

∆f := ∆− ⟨∇f,∇⟩,

and the weighted volume (or f -volume) ofM (if it exists) is defined by Vf (M) :=∫
M
e−fdv. A function u is called f -harmonic if ∆f u = 0, and f -subharmonic

if ∆f u ≥ 0. For 0 < p <∞, u is called Lp
f -integrable if the weighted Lp-norm

(or Lp
f -norm) (

∫
M

|u|pe−fdv)1/p is finite. For 0 < m < ∞, the m-dimensional
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Bakry-Émery Ricci tensor [3] is defined by

Ricmf := Ric + Hess f − 1
mdf ⊗ df,

where Ric is the Ricci tensor of (M, g) and Hess is the Hessian with respect to

metric g. For m = ∞, we have the (∞-dimensional) Bakry-Émery Ricci tensor

Ricf := Ric + Hess f.

Clearly, Ricmf ≥ c implies Ricf ≥ c, but not vice versa. If a SMMS satisfies
Ricmf = λ g for some λ ∈ R, it is called an m-quasi-Einstein manifold. When
m = 1, it is the so-called static manifold in general relativity. When 0 < m <
∞, (Mn × Fm, gM + e−2f/mgF ) is a warped product Einstein manifold [5],
where (Fm, gF ) is an Einstein manifold. In particular, if Ricf = λ g, it is a
gradient Ricci soliton, which arises in the Ricci flow [11].

In this paper, we shall study function theoretic properties and the number
of ends on SMMSs. First, we give a sufficient condition such that the SMMS
admits f -harmonic functions. Then we give a sharp L2

f -decay estimate for
the Schrödinger operator. As applications, we study finitely many ends for
various types of SMMSs. We also study the dimension estimate of the space of
L2
f -harmonic one-forms.
Recently, the study of relations among the curvature and function on SMMSs

has been active. Brighton [4] proved that there is no non-constant bounded
f -harmonic function when Ricf ≥ 0. Munteanu-Wang [23] proved that any
positive f -harmonic function of sublinear growth is constant. Pigola-Rigoli-
Setti [26] showed that any nonnegative Lp

f -integrable (p > 1) f -subharmonic

function is constant. In [35,36], many Lp
f -Liouville theorems are obtained under

various types of SMMSs. Among these results, we see that many SMMSs do
not admit non-constant f -harmonic function. So we raise a natural question.

Question. What types of SMMSs do they admit non-constant f -harmonic
functions?

Anderson [1] and Sullivan [30] independently proved that any complete,
simply connected, negatively curved manifold admits many bounded harmonic
functions. Indeed, they showed that there is a geometric compactification of
manifold M by adding an (n − 1)-sphere S∞(M) at infinity, such that the
Dirichlet problem of the Laplacian equation on M ∪ S∞(M) can be solved for
any given data on S∞(M). Here we prove a weighted version of their result.

Theorem 1.1. Let (M, g, e−fdv) be an n-dimensional simply connected SMMS
with sectional curvature KM satisfying

−b2 ≤ KM ≤ −a2 < 0,

where a and b are two positive constants. If |∇f | ≤ α for some constant
α < a/4, then, for any φ ∈ C(S∞(M)), there exists a unique f -harmonic
function u ∈ C∞(M)∩C(M) with u = φ on S∞(M), where M :=M∪S∞(M).
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The proof of theorem uses the Rauch-Toponogov comparison, the cone topol-
ogy of M ∪S∞(M) and the classical Perron method; see Section 2. We remark
that the assumption α < a/4 is used in the construction of barrier functions,
and we do not know if it can be removed or not.

In Section 3, we review some relevant facts needed for our further arguments.
We first recall Qian’s volume comparison [27]. Then we give an improved
Bochner formula for f -harmonic functions. Finally we recall certain f -mean
value inequalities on SMMSs.

In Section 4, we study L2
f -decay estimates for a Schrödinger operator. The

proof uses Hua-Lu’s argument [12], which avoids tedious iteration in [18–20].
Recall that an end E of M is an unbounded component of M\Ω for some
compact set Ω ⊂M . Without loss of generality, we assume Ω is a geodesic ball
B(p,R) with center p and radius R > 0. In particular, the end E is a manifold
with boundary. Let λ1,f (E) be the infimum of the L2

f -spectrum of f -Laplacian
on E with Dirichlet boundary conditions. We now state a special result of this
Section 4, which is a weighted version of Hua-Lu’s estimate [12].

Theorem 1.2. Let (M, g, e−fdv) be a SMMS. Suppose E is an end of M
with λ1,f (E) > σ for some constant σ. Let u be a nonnegative function in E
satisfying ∆fu ≥ −σu. If there exists a sequence Ri → ∞ such that

(1)

∫
E(Ri+1)\E(Ri)

u2e−2are−fdv → 0,

where a =
√
λ1,f (E)− σ, then∫

E(ρ+1)\E(ρ)

u2e−fdv ≤ a+ 1

a2
e−2aρ

∫
E(R0+1)\E(R0)

e2aru2e−fdv

for all ρ > R0 + 1, where E(R) = B(p,R) ∩ E.

Remark 1.3. The condition (1) of theorem is a little weaker than Dung-Khanh-
Son’s condition

∫
E(R)

u2e−2are−fdv = o(R) in [8]. Indeed, as in [12], for 0 <

s <∞ and sufficiently large R,∫
E(R)

u2e−2are−fdv ≥
[Rs ]−1∑
i=2

∫
E(si+1)\E(si)

u2e−2are−fdv.

Hence if
∫
E(R)

u2e−2are−fdv = o(R), then there exists a sequence Ri → ∞,

i → ∞, such that
∫
E(Ri+1)\E(Ri)

u2e−2are−fdv → 0, i → ∞. On the other

hand, we will give a specific example (see Example 4.3) to demonstrate that
our condition (1) is best possible.

In Section 5, we provide some sufficient conditions for an end of SMMS being
f -parabolic or f -non-parabolic. Meanwhile we give a precise decay estimate
for f -volumes of annuluses on SMMSs with positive spectrum.

In Section 6, we apply Theorem 1.2 to get an estimate for the number of ends
of SMMS with finite f -volume when Ricmf is bounded below; see Theorem 6.1.
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This result generalizes Li-Wang’s manifold case [20] and Dung-Khanh-Son’s
weighted version [8].

In Section 7, we discuss the number of ends with infinite f -volume. We
say that f satisfies first-order derivative property with constant α ≥ 0 for a
point p ∈ M if |⟨∇f,∇u⟩| ≤ α|∇u| for any f -harmonic function u on M ,
and ∂rf ≥ −α along all minimal geodesic segments r from p. In particular,
if |∇f | ≤ α, then f obviously satisfies first-order derivative property with
constant α for any point x ∈M .

Theorem 1.4. Let (M, g, e−fdv) be an n-dimensional SMMS. Suppose that
there exists a geodesic ball B(p,R0) ⊂ M such that λ1,f (M\B(p,R0)) > 0.
On M\B(p,R0), assume that f satisfies first-order derivative property with
constant α ≥ 0 for the point p. If

Ricf ≥ −k − 1

k − 2
λ1,f (M\B(p,R0)) +

α2

k − n
+ ϵ

for some ϵ > 0 and some k ≥ n+ α
2 λ1,f (M\B(p,R0))

−1/2, then M has finitely
many ends with infinite f -volume.

Our proof indicates that there exists a number C depending on n, R0, α, ϵ,
λ1,f (M\B(p,R0)), Vf (p, 2R0), supB(p,3R0) |Ricf |, infx∈B(p,2R0) Vf (x,R0) and

supB(p,3R0) |∇f |, such that the number of ends is at most C; see Section 7.

When α = 0 (and k = n), Theorem 1.4 recovers Li-Wang’s result [18]. The
assumption on k ensures an improved Bochner formula in Lemma 3.2 and an
exponentially decay property (see (20)) in our argument. The proof involves
Li-Tam’s theory [17], L2

f -decay estimates (Lemma 4.4), an improved Bochner

formula (Lemma 3.2), a f -mean value inequality (Proposition 3.3), etc. These
discussion is provided in Section 7.

In Section 8, we study the dimension estimate of the space of L2
f -harmonic

one-forms. We get that

Theorem 1.5. Let (M, g, e−fdv) be an n-dimensional SMMS with a Sobolev
inequality (∫

M

|ϕ|νe−fdv

)2/ν

≤ Cs

∫
M

|∇ϕ|2e−fdv

for all ϕ ∈ C∞
0 (M), where ν > 2 and Cs > 0 are constants. Suppose that there

exists a constant α ≥ 0 such that |⟨∇f, ω⟩| ≤ α|ω| for all f -harmonic one-form
ω on M . If

Ricf ≥ −τ(x) + α2

k − n
for some k ≥ n and some non-negative smooth function τ ∈ C∞(M) satisfying∫
M
τ

ν
ν−2 e−fdv <∞, then M has finitely many ends.

The above Sobolev inequality implies that each end is f -non-parabolic; see
[15]. If λ1,f (M) > 0 and Ricf has a more restriction, we are able to get a
stronger result; see Theorem 8.2 in Section 8.
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We mention that there are many related works concerning the number of
ends on SMMSs. On one hand, many people generalize the Cheeger-Gromoll
splitting theorem [6] to SMMSs, such as [7], [21], [33], [10], [31], [25] and [37].
From these results, we immediately get that each case has at most two ends.
On the other hand, Wei-Wylie [33] proved that any SMMS with Ricf > 0 for
bounded f has only one end. The second author [34] proved the finite number
of ends when Ricf ≥ 0 outside a compact set. Recently, Hua and the second
author [13] established gap theorems for the number of ends of SMMSs.

2. Existence of f-harmonic functions

In this section, we will prove Theorem 1.1 in introduction. Following [1,2,28],
we first recall a process how to give a compactification of a negatively curved
manifold.

Let (M, g) be an n-dimensional complete simply connected manifold whose
sectional curvature KM satisfying −b2 ≤ KM ≤ −a2 < 0, where a and b
are positive constants. Let H(c) denote the n-dimensional space form with
constant curvature c. By the Cartan-Hadamard theorem, for any point p ∈M ,
the exponential map expp : TpM → M is a diffeomorphism. This allows us to

make large-scale comparisons of the geometry of M with H(−a2) and H(−b2)
by detecting the behavior of Jacobi fields. For example, we can obtain the
Rauch-Toponogov comparison, which roughly says that angles are smaller in
M than in H(−a2), while distances are greater; the reverse holds in comparison
to H(−b2). In particular, for the distance r(x) = d(p, x) starting from p, we
have (cf. [28])

(2) a coth(ar)(g − dr ⊗ dr) ≤ Hess r ≤ b coth(br)(g − dr ⊗ dr).

This implies all geodesic balls B(p, r) are strictly convex. Moreover, for any
three points p, x1, x2 ∈ M , let r = d(p, x1) = d(p, x2) and the corresponding
geodesic rays γ1, γ2 from x1 and x2, respectively, meet with angle θ at p. By
the Rauch-Toponogov comparison,

(3) 2r + 2
a (ln θ − 1) ≤ d(x1, x2) ≤ 2r + 2

b (ln θ + 1)

for sufficiently large r and sufficiently small θ.
We recall the concept of the boundary of (M, g) with negative curvature at

infinity. Given any point p ∈ M and any unit vector v ∈ TpM , there exists
a geodesic ray starting from p with direction v. Two geodesic rays γ1 and
γ2 in M are called equivalent, denoted by γ1 ∼ γ2, if d(γ1(t), γ2(t)) ≤ c for
all t ≥ 0, where c is an absolute constant. The geometric boundary of M at
infinity, denoted by S∞(M), is defined to be the set of all equivalence classes
of geodesic rays, i.e., S∞(M) := The set of all geodesic rays/ ∼. By (3) we see
that two geodesic rays starting from the same point are equivalent if and only
if they are the same. We identify geometric boundary at infinity S∞(M) with
the set all geodesics starting from point p, hence with the (n− 1)-dimensional
unit sphere S(p, 1) of TpM .
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A natural topology, the cone topology, is defined on M = M ∪ S∞(M) as
follows: let Cp(v, δ) be the cone about vector v of angle δ > 0, i.e., Cp(v, δ) :=
{x ∈ M |∠(v, px) < δ}, where ∠(v, px) denotes the angle at point p between
vector v and the geodesic ray from p passing through x. We then define
the truncated cone by Tp(v, δ, R) := Cp(v, δ)\B(p,R). All truncated cones
{Tp(v, δ, R)|p ∈ M, v ∈ TxM, δ > 0, R > 0} together with geodesic balls
{B(x,R)|x ∈ M,R > 0} form a local basis for the cone topology of the space
M =M ∪ S∞(M). Such a topology gives a compactification of M . In general,
the boundary at infinity S∞(M) does not attach smoothly onto M . However,
when sectional curvatures are bounded between two finite negative constants,
using the Rauch-Toponogov comparison, we have that

Proposition 2.1 (Anderson-Schoen [2]). Let (M, g) be an n-dimensional sim-
ply connected Riemann manifold with sectional curvature KM satisfying −b2 ≤
KM ≤ −a2 < 0, where a and b are two positive constants. The cone topology
of M =M ∪ S∞(M) defined as above is a Cα-structure, where α = a/b.

We now prove Theorem 1.1 by following the argument of [2].

Proof of Theorem 1.1. For a fixed point p ∈ M , S∞(M) can be viewed as the
(n−1)-dimensional unit sphere S(p, 1) of TpM . Note that any continuous func-
tion can be uniformly approximated by smooth functions on S(p, 1) ∼= S∞(M),
where S(p, 1) has its standard smooth structure. Moreover, the maximum
principle implies that if there exists a series of f -harmonic functions {uk ∈
C∞(M) ∩ C(M)} converges uniformly on S∞(M), then it also converges uni-
formly onM to a f -harmonic function in the class C∞(M)∩C(M). Therefore,
without loss of generality, we assume φ ∈ C∞(S(p, 1)).

Consider normal polar coordinates {(r, θ)|r > 0, θ ∈ S(p, 1)} at p. Write
φ = φ(θ), where θ ∈ S(p, 1). Then we extend φ toM\{p} by defining φ(r, θ) =
φ(0, θ), ∀ r > 0. The extended function is also denoted by φ. We see that φ
is smooth and bounded on M\{p}. Set oscB(x,1) := supy∈B(x,1) |φ(y) − φ(x)|.
We shall prove the theorem by four steps.

Step 1: We will prove that oscB(x,1)φ = O(e−ar(x)), where r(x) = d(p, x) is
a distance function starting from p ∈ M . Indeed, by the definition of φ, for
any y ∈ B(p, 1),

|φ(y)− φ(x)| = |φ(θ′)− φ(θ)| ≤ C|θ′ − θ|,

where θ′ and θ denotes the spherical coordinates of y and x, respectively.
By (3), we have 2r(x) + 2

a (ln |θ′ − θ| − 1) ≤ d(x, y) < 1, namely, |θ′ − θ| ≤
C1(a)e

−ar(x). Therefore, oscB(x,1)φ ≤ C(p, a, φ)e−ar(x), where C(p, a, φ) is a
constant depending on p, a and φ.

Step 2: We shall take the average φ of φ satisfying ∆fφ = O(e(4α−a)r(x)),
where α < a/4. To achieve it, we choose a cut-off function χ ∈ C∞

0 (R) such
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that

χ(t) =

 1 t ∈ [−1/2, 1/2],
0 t ∈ (−∞,−1] ∪ [1,∞),
0 ≤ χ(t) ≤ 1 t ∈ (−1,−1/2) ∪ (1/2, 1).

Set φ(x) :=
∫
M

χ(ρ2
x(y))φ(y)e−f(y)dv(y)∫

M
χ(ρ2

x(y))e
−f(y)dv(y)

, where ρx(y) := d(x, y). Then,

(4)

|φ(x)− φ(x)| =

∣∣∣∫B(x,1)
χ(ρ2x(y)) ·

(
φ(y)− φ(x)

)
e−f(y)dv(y)

∣∣∣∫
B(x,1)

χ(ρ2x(y))e
−f(y)dv(y)

≤ sup
y∈B(x,1)

|φ(y)− φ(x)|

= oscB(x,1)φ

= O(e−ar(x)).

On the other hand, we will give an upper bound of ∆f φ. Direct computation
shows that

(5)

∆f φ(x0)

= ∆f

(
φ(x)− φ(x0)

)∣∣
x=x0

=

∫
M

∆f

[
χ(ρ2x(y))∫

M
χ(ρ2x(y))e

−f(y)dv(y)

](
φ(y)− φ(x0)

)
e−f(y)dv(y)

∣∣∣∣
x=x0

.

To estimate the right hand side of (5), set Ψ :=
∫
M
χ(ρ2y(x))e

−f(y)dv(y) and

Φ := χ(ρ2y(x)). Compute that

(6) ∆f

(
Φ

Ψ

)
=

1

Ψ2
(Ψ∆fΦ− 2∇Φ · ∇Ψ− Φ∆fΨ) + 2

Φ

Ψ3
|∇Φ|2.

Notice that ∇Φ = χ′(ρ2)·2ρ∇ρ and ∆fΦ = 4ρ2χ′′(ρ2)+2χ′(ρ2)+2ρχ′(ρ2)∆fρ,
where ρ = ρy(x) = d(y, x). Since KM ≥ −b2, by the Laplacian comparison,
when ρ = ρy(x) ≤ 1,

ρ∆fρ = ρ∆ρ− ρ∇f∇ρ ≤ (n− 1)(1 + b) + α.

Hence, when ρ ≤ 1, by the above equalities and the definition of χ, we have

(7) |∇Φ| ≤ 5 and ∆fΦ ≤ C(n, b, α)

for some C(n, b, α) depending on n, b and α.
Since Ric ≥ −(n − 1)b2, by the Bishop volume comparison, V (B(x, 1)) ≤

C(n, b) for some constant C(n, b) depending on n and b. Also, the assumption
|∇f | ≤ α implies that, for any y ∈ B(x, 1),

|f(y)| − |f(p)| ≤ |f(y)− f(p)| ≤ αd(p, y) ≤ α (r(x) + 1),
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where r(x) = d(p, x). Hence, |f(y)| ≤ |f(p)|+ α (r(x) + 1) for any y ∈ B(x, 1).
Combining these estimates, we get

(8)

|∇Ψ(x)| ≤ C

∫
B(x,1)

e−f(y)dv(y)

≤ C e|f(p)|+α(r(x)+1) V (B(x, 1))

≤ C(n, b, α, f(p))eαr(x)

and

(9) |∆fΨ(x)| ≤ C

∫
B(x,1)

e−f(y)dv(y) ≤ C(n, b, α, f(p)) eαr(x),

where r(x) = d(p, x). We also need a lower bound of Ψ(x). Since KM ≤ 0,
by the volume comparison and simply connectedness, we have V (x, 1) ≥ c(n).
Hence,

(10) Ψ(x) =

∫
M

χ(ρ2x(y))e
−f(y)dv(y) ≥ Vf (x,

1
2 ) ≥ C(n, α, f(p)) e−αr(x),

where we used −f(y) ≥ −|f(p)| − α(r(x) + 1) for y ∈ B(x, 1) in the last
inequality.

We now substitute (7), (8), (9) and (10) into (6), and finally obtain that

∆f (
Φ
Ψ ) ≤ C(n, b, α, f(p)) e3αr(x).

Plugging this into (5) and using the estimate |f(y)| ≤ |f(p)|+ α(r(x) + 1) for
y ∈ B(x, 1), we obtain

|∆fφ(x)| ≤ C(n, b, α, f(p))e3αr(x) · oscB(x,1)φ ·
∫
B(x,1)

e−f(y)dv(y)

≤ C(n, a, b, α, f(p), p, φ) e(4α−a)r(x),

where we used oscB(x,1)φ ≤ C(p, a, φ)e−ar(x) and V (x, 1) ≤ C(n, b) in the last
inequality.

Step 3: We will construct Barrier functions for f -harmonic functions.
Consider g(x) := e−δr(x), where δ is a positive constant, determined later.

We have ∆f g = −δe−δr∆f r+δ
2e−δr|∇r|2. SinceKM ≤ −a2, by the Laplacian

comparison, we have

∆f r = ∆ r −∇f · ∇r
≥ (n− 1)a coth(ar)− |∇f |
≥ (n− 1)a− α.

Since α < a/4, then α − (n − 1)a < 0. Therefore, for sufficiently small δ > 0,
we get that

∆f g ≤ δe−δr [α− (n− 1)a] + δ2e−δr

= δe−δr [δ + α− (n− 1)a]

< 0.
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Since ∆f φ = O(e(4α−a)r(x)), where α < a/4, as long as δ is sufficiently small,
we are able to find a positive constant C such that ∆f (Cg) ≤ −|∆f φ|, that is,
we have two barrier functions such that ∆f (φ+Cg) ≤ 0 and ∆f (φ−Cg) ≥ 0.

Step 4: We will prove the theorem.
By the classical Perron method, there exists a f -harmonic function u sat-

isfying φ − Cg ≤ u ≤ φ + Cg. Moreover u satisfies the boundary condition
because that

|u− φ|(x) ≤ |u− φ+ φ− φ|

≤ Cg(x) + Ce−ar(x)

≤ Ce−δr(x) + Ce−ar(x) → 0

as r(x) → ∞, where we used (4). This completes the theorem. □

3. Bochner formula and f-mean value inequality

In this section, we first recall Qian’s f -volume comparison [27]. Then we give
an improved Bochner formula for f -harmonic functions. Finally we provide f -
mean value inequalities for a differential inequality. These results will be used
in the study of the number of ends for SMMSs in the following sections.

Lemma 3.1 (Qian [27]). If Ricmf ≥ −(n+m− 1)K for some constant K > 0,
where 0 < m <∞, then for any point p ∈M , we have

Vf (p,R)

Vf (p, r)
≤
V n+m
K (R)

V n+m
K (r)

for any R ≥ r > 0, where V n+m
K (R) denotes the volume of geodesic ball B(o,R)

in the model space Mn+m
K , the simply connected space of dimension n+m with

constant sectional curvature −K.

Inspired by Yau [38], we next give an improved Bochner formula for f -
harmonic functions. We do not know whether the formula holds or not when
f grows linearly.

Lemma 3.2. Let (M, g, e−fdv) be an n-dimensional SMMS. If Ricf ≥ −(n−
1)τ(x) for some function τ(x) and |⟨∇u,∇f⟩| ≤ α|∇u| for any f -harmonic
function u, where α ≥ 0 is a constant, then for any k > n,

∆f |∇u|p ≥ 1

p

(
k

k − 1
+ p− 2

)
|∇|∇u|p|2

|∇u|p
− p

[
α2

k − n
+ (n− 1)τ(x)

]
|∇u|p,

where p > 0. In particular, if p = k−2
k−1 , then

(11) ∆f |∇u|p ≥ −k − 2

k − 1

[
α2

k − n
+ (n− 1)τ(x)

]
|∇u|p.
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Proof. Choose a local orthogonal frame {e1, e2, . . . , en} near a point x ∈M so
that ∇u = |∇u|e1. Using the classical Bochner formula, Ricf ≥ −(n − 1)τ(x)
and the f -harmonicity of u, we compute that

∆f |∇u|2 = 2u2ij + 2Ricf (∇u,∇u) ≥ 2u2ij − 2(n− 1)τ(x)|∇u|2.

Observe |∇|∇u|2|2 = 4
∑n

j=1(
∑n

i=1 uiuij)
2 = 4u21

∑n
i=1 u

2
1i = 4|∇u|2

∑n
i=1 u

2
1i

and

u2ij ≥ u211 + 2

n∑
s=2

u21s +

n∑
s=2

u2ss

≥ u211 + 2

n∑
s=2

u21s +
1

n− 1
(∆u− u11)

2

= u211 + 2

n∑
s=2

u21s +
1

n− 1
(fiui − u11)

2
.

By the Cauchy-Schwarz inequality, for any k > n,

u2ij ≥ u211 + 2

n∑
s=2

u21s +
1

n− 1

(
u211

1 + k−n
n−1

− (fiui)
2

k−n
n−1

)

≥ k

k − 1

n∑
i=1

u21i −
α2

k − n
|∇u|2,

where we used |⟨∇u,∇f⟩| ≤ α|∇u|. Combining these inequalities,

∆f |∇u|2 ≥ k

2(k − 1)
|∇u|−2|∇|∇u|2|2 − 2

(
α2

k − n
+ (n− 1)τ(x)

)
|∇u|2

=
2k

k − 1
|∇|∇u||2 − 2

(
α2

k − n
+ (n− 1)τ(x)

)
|∇u|2.

Using the above inequality and∇|∇u|p = p
2 |∇u|

p−2∇|∇u|2 = p|∇u|p−1 ·∇|∇u|,
we get

∆f |∇u|p =
p− 2

p

(∇|∇u|p)2

|∇u|p
+
p

2
|∇u|p−2∆f |∇u|2

≥ p− 2

p

(∇|∇u|p)2

|∇u|p

+ p|∇u|p−2

[
k|∇u|2−2p(∇|∇u|p)2

(k − 1)p2
−
(
α2

k−n
+ (n−1)τ(x)

)
|∇u|2

]
=

1

p

(
k

k − 1
+ p− 2

)
(∇|∇u|p)2

|∇u|p
− p

(
α2

k − n
+ (n− 1)τ(x)

)
|∇u|p.

Then (11) follows by letting p = k−2
k−1 . □

Finally we give a f -mean value inequality for a differential inequality; it will
be used in the proof of Theorem 1.4.
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Proposition 3.3. Let (M, g, e−fdv) be n-dimensional SMMS. Assume Ricf ≥
−(n − 1)K for some constant K ≥ 0. If v is a non-negative function defined
on B(p, ρ) satisfying

∆fv ≥ −λv,
for some constant λ ≥ 0, then for any 0 < δ < 1 and k > 0, there exists a
constant C > 0 depending only on n, k, δ, kλρ2,

√
Kρ, A′ρ such that

sup
B(p,δρ)

(vk) ≤ C

Vf (p, ρ)

∫
B(p,ρ)

vke−fdv,

where A′ := A′(ρ) = supx∈B(p,ρ) |∇f(x)|.

Proof. Let u(x, t) = e−λtv(x) and then ∆fu− ut ≥ 0 on B(p, ρ)× [0,∞). Fix
k > 0. Let u be a smooth non-negative subsolution of the f -heat equation in
cylinder Q = B(p, ρ) × (s − ρ2, s), s ∈ R. Recall that by Proposition 2.7 and
Remark 2.5 in [36], we showed that there exist constants ci(n, k), i = 1, 2, 3,
such that

sup
Qδ

(uk) ≤ c1e
c2(A

′+
√
K)ρ+c3A

′√Kρ2

(1− δ)2+nρ2Vf (p, ρ)

∫
Q

uke−fdvdt,

where 0 < δ < 1 and Qδ = B(p, δρ) × (s − δρ2, s), where A′ := A′(ρ) =
supx∈B(p,ρ) |∇f(x)|. Letting s = 2ρ2, then for any (x, t) ∈ B(p, δρ)×(ρ2, 2ρ2),

e−kλtvk ≤ c1e
c2(A

′+
√
K)ρ+c3A

′√Kρ2

(1− δ)2+nρ2Vf (p, ρ)

∫ 2ρ2

ρ2

e−kλtdt

∫
B(p,ρ)

uke−fdv,

that is,

sup
B(p,δρ)

(vk) ≤ c1e
c2(A

′+
√
K)ρ+c3A

′√Kρ2

(1− δ)2+nVf (p, ρ)
· 1− e−kλρ2

kλρ2

∫
B(p,ρ)

vke−fdv.

This implies the result. □

4. L2
f -decay estimate

In this section, we give a weighted version of L2-decay estimates in [18–20].
Then we apply this result to get f -volume estimates for ends.

On (M, g, e−fdv), let λ1,f (M) = inf Spec(∆f ) denote the infimum of the
spectrum of the f -Laplacian. It can be characterized by

λ1,f (M) = inf

{∫
M

|∇ϕ|2e−fdv∫
M
ϕ2e−fdv

∣∣∣∣ϕ ∈ H1,2
f,0(M)

}
,

where the infimum is taken over all compactly supported functions in H1,2
f (M).

In particular, λ1,f (M) = infi→∞ λ1,f (Ωi) for any compact exhaustion {Ωi} of
M , where λ1,f (Ωi) is the Dirichlet first eigenvalue of ∆f on Ωi. Assume that E
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is an end of M with respect to the compact set B(p,R0). Let λ1,f (E) denote
the infimum of the Dirichlet spectrum of ∆f on E. If λ1,f (E) > 0, then

(12) λ1,f (E)

∫
E

ϕ2e−fdv ≤
∫
E

|∇ϕ|2e−fdv

for any compactly supported function ϕ ∈ H1,2
f,0(E).

Another important quantity of the spectrum is the infimum of the essen-
tial spectrum λe,f (M) of ∆f . It has property that µ1,f (M) ≤ λe,f (M) and
λ1,f (M) ≤ λe,f (M). Inversely, for any ϵ > 0, there exists a compact set

Ω ⊂M such that λe,f (M) ≤ λ1,f (Ω) + ϵ for any compact set Ω ⊂M\Ω. From
this, we easily see that the results proved in this paper with the assumption of
λ1,f (E) > 0 can be stated as λe,f (M) > 0.

We consider a general situation for L2
f -decay estimates on SMMSs. Let V be

a potential function onM , and ∆f −V (x) be a weighted Schrödinger operator.
Assume that there exists a positive function ϱ on M such that the weighted
f -Poincaré type inequality

(13)

∫
M

ϱ ϕ2e−fdv ≤
∫
M

|∇ϕ|2e−fdv +

∫
M

V (x)ϕ2e−fdv

holds for ϕ ∈ C∞
0 (M). If ϱ = λ1,f (M) and V = 0, then (13) recovers to (12). So

(13) is a generalization of the condition λ1,f (M) > 0. If there exists a positive
function h on M such that (∆f + ϱ − V )h ≤ 0, then (13) is valid. For the
existence issue of ϱ in (13), the reader are referred to [19] for nice discussions.

We introduce the ϱ-metric by dsϱ
2 = ϱ ds2M . Using this metric, we consider

the ϱ-distance function to be rϱ(x, y) = infγ ℓϱ(γ), the infimum of length of all
smooth curves γ joining x and y with respect to ds2ϱ. For a fixed point p ∈M ,

let rϱ(x) = rϱ(p, x) be the ϱ-distance to p, and then |∇rϱ|2(x) = ϱ(x).

Definition. We say that (M, g, e−fdv) has property (Pf
ϱ,V ) if there exists a

positive function ϱ such that (13) holds and the ϱ-metric is complete.

Let Bϱ(p,R) = {x ∈ M |rϱ(p, x) < R} be a geodesic ball centered at p ∈ M
with radius R with respect to dsϱ

2. Clearly, if ϱ = 1, this geodesic ball returns
to the usual geodesic ball B(p,R) with respect to the background metric ds2M .
When p is a fixed point, we often suppress the dependency of p and write
Bϱ(R) = Bϱ(p,R) and B(R) = B(p,R). If E is an end of M , we let Eϱ(R) =
Bϱ(p,R) ∩ E and E(R) = B(R) ∩ E. Now We give an improved weighted
version of Li-Wang’s decay estimate [19].

Theorem 4.1. Let (M,ds2ϱ, e
−fdv) be an n-dimensional SMMS with property

(Pf
ϱ,V ). Let u be a nonnegative function in an end E with (∆f − V (x))u ≥ 0. If

there exists a sequence Ri → ∞ such that
∫
Eϱ(Ri+1)\Eϱ(Ri)

ϱ e−2rϱu2e−fdv → 0,

then ∫
Eϱ(ρ+1)\Eϱ(ρ)

ϱ u2e−fdv ≤ 3e−2ρ

∫
Eϱ(R0+1)\Eϱ(R0)

ϱ e2rϱu2e−fdv
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for all ρ > R0 + 1.

Remark 4.2. In [19], Li-Wang required u to satisfy
∫
Eϱ(R)

ϱ e−2rϱu2dv = o(R).

In [12], Hua-Lu extended Li-Wang’s result [18] when λ1,f (E) > 0. Combining
their arguments, our condition of u generalizes previous cases. We remark that
Dung-Sung [9] also proved a weighted version under a stronger condition of u.

Proof of Theorem 4.1. Recall that Li-Wang [19] used a delicate iterated tech-
nique to prove the decay estimate. Here we will apply the argument of [12] to
give a simplified proof without iterated argument. In the following, all integrals
are discussed with respect to the weighted measure e−fdv, and we omit the
notation e−fdv for simplicity.

For a smooth function ϕ with compact support in E, we have∫
E

|∇(ϕu)|2 =

∫
E

|∇ϕ|2u2 −
∫
E

ϕ2u∆fu.

Using ∆fu ≥ V u and the fact
∫
E
(ϱ−V )(ϕu)2 ≤

∫
E
|∇(ϕu)|2, we get

∫
E
ϱ ϕ2u2

≤
∫
E
|∇ϕ|2u2. Replacing ϕ by ϕeh for some Lispchitz function h and expanding

∇(ϕ eh),

(14)

∫
E

ϱ ϕ2e2hu2 ≤
∫
E

|∇ϕ|2e2hu2 + 2

∫
E

ϕ e2h⟨∇ϕ,∇h⟩u2 +
∫
E

ϕ2|∇h|2e2hu2.

As in [12], we will choose suitable cut-off functions ϕ and h in (14) to prove
our result. Recall that Hua-Lu’s construction of ϕ and h in [12] is as follows;
see Figure 1 for a concrete description. Let R0 > 0 and R > R0 + 1. Define

ϕ(t) =


0 t ∈ [0, R0) ∪ [R+ 1,∞),
t−R0 t ∈ [R0, R0 + 1),
1 t ∈ [R0 + 1, R),
−t+R+ 1 t ∈ [R,R+ 1).

Let R0 + 1 < ρ < R− 1. For some constant a > 0, define

h(t) =

 at t ∈ [0, ρ),
aρ t ∈ [ρ, ρ+ 1),
aρ− a(t− ρ− 1) t ∈ [ρ+ 1,∞).

In our situation, ϕ(rϱ(x)) is given by

ϕ(rϱ(x)) =


0 Eϱ(R0) ∪ (E\Eϱ(R+ 1)) ,
rϱ(x)−R0 Eϱ(R0 + 1)\Eϱ(R0),
1 Eϱ(R0 + 1)\Eϱ(R),
−rϱ(x) +R+ 1 Eϱ(R+ 1)\Eϱ(R).

For R0 + 1 < ρ < R− 1 and for some a > 0, h(rϱ(x)) is defined by

h(rϱ(x)) =

 a rϱ(x) Eϱ(ρ),
a ρ Eϱ(ρ+ 1)\Eϱ(ρ),
a ρ− a (rϱ(x)− ρ− 1) E\Eϱ(ρ+ 1).
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t0 R R +1

.1

. .
R0R +1

.ρa

.
0

.
ρ

.
ρ+1

.

h (t)

φ (t)

y

Figure 1. Definition of cut-off functions ϕ(t) and h(t)

Using the above two cut-off functions, we have that∣∣∣∣∫
E

ϕ e2h⟨∇ϕ,∇h⟩u2
∣∣∣∣ ≤ ∫

Eϱ(R0+1)\Eϱ(R0)

aϱ e2hu2 +

∫
Eϱ(R+1)\Eϱ(R)

aϱ e2hu2.

Substituting this into (14) yields∫
E

ϱ ϕ2e2hu2≤
∫
Eϱ(R0+1)\Eϱ(R0)

(2a+1)ϱ e2hu2 +

∫
Eϱ(R+1)\Eϱ(R)

(2a+1)ϱ e2hu2

+

∫
E\(Eϱ(ρ+1)\Eϱ(ρ))

a2ϱ ϕ2e2hu2.

Let a = 1. By definitions of ϕ and h, the above inequality is simplified as

e2ρ
∫
Eϱ(ρ+1)\Eϱ(ρ)

ϱ u2 ≤ 3

∫
Eϱ(R0+1)\Eϱ(R0)

ϱ e2rϱ u2

+ 3e4ρ+2

∫
Eϱ(R+1)\Eϱ(R)

ϱ e−2rϱ u2.

For any a fixed ρ, by the decay condition of u, there exists a sequence Ri → ∞
such that

∫
Eϱ(Ri+1)\Eϱ(Ri)

ϱ e−2rϱu2 → 0. Taking R = Ri and letting i → ∞
gives the conclusion. □

In the rest of this section, we consider L2
f -decay estimates for generalized

subharmonic functions when λ1,f (E) > 0.
Similar to the manifold case, if SMMS has polynomial f -volume growth, then

λ1,f (M) = 0, which is a weighted version of Cheng-Yau’s spectrum estimate.
Moreover, we have a weighted version of Brooks’ spectrum estimate λe,f (M) ≤
1
4τ

2
f (M), where the weighted volume entropy τf (M) is defined by

τf (M) :=

 lim sup
R→∞

lnVf (p,R)
R , Vf (M) = ∞,

lim sup
R→∞

− lnVf (M\B(p,R))
R , Vf (M) <∞.
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This result extends the weighted Cheng-Yau’s eigenvalue estimate. Now we
apply Theorem 4.1 to prove Theorem 1.2, which further improves Brooks’ spec-
trum estimate.

Proof of Theorem 1.2. Since λ1,f (E) > 0, then

λ1,f (E)

∫
E

ϕ2e−fdv ≤
∫
E

|∇ϕ|2e−fdv

for any compactly supported function ϕ in H1,2
f (E). This implies the Poincaré

inequality∫
E

(λ1,f (E)− σ)ϕ2e−fdv ≤
∫
E

|∇ϕ|2e−fdv − σ

∫
E

ϕ2e−fdv.

Let V = −σ and ϱ = λ1,f (E) − σ in Theorem 4.1. Meanwhile the distance
function with respect to the metric dsϱ

2 is given by rϱ(x) = a r(x), where r(x)
is the background distance function. The theorem then follows by the same
argument of Theorem 4.1. □

Using Theorem 1.1, we give an example to indicate that the condition (1) is
best possible.

Example 4.3. Consider an n-dimensional hyperbolic space form Hn with sec-
tional curvature K = −1 and the weight function f(x) = θ sin r(x), where
0 < θ < 1/4 is a constant and r(x) = d(p, x) is a distance function starting
from point p ∈ Hn. Then Vf (B(p,R)) ∼ C1(n, θ)e

(n−1)R. By the definition

of λ1,f (Hn), we have λ1,f (Hn) ≥ λ1(Hn)e−2θ = (n−1)2

4 e−2θ. Since f is sub-

linear, by Theorem 1.2 of [24], we also have λ1,f (Hn) ≤ (n−1)2

4 . Let u be a
non-constant bounded f -harmonic function on Hn with boundary value u = 2
on S∞(Hn), for sufficiently large R, we then have∫

E(R+1)\E(R)

u2e−2
√

λ1,f (Hn) r(x)e−fdv ≥
∫
E(R+1)\E(R)

e−(n−1)(R+1)e−fdv

≥ C2(n, θ),

where we used Vf (B(p,R)) ∼ C1(n, θ)e
(n−1)R in the second inequality. On the

other hand, if the conclusion of Theorem 1.2 is true, then for all R > 2,∫
B(p,R+1)\B(p,R)

u2e−fdv ≤ Ce−
2(n−1)

eθ
R,

where C is a constant depending on n, θ and ∥u∥L2
f (B(p,2)), which implies that∫

B(p,R+1)

u2e−fdv ≤
∫
B(p,R)

u2e−fdv + Ce−
2(n−1)

eθ
R

≤
∫
B(p,R−1)

u2e−fdv + C
[
e−

2(n−1)

eθ
R + e−

2(n−1)

eθ
(R−1)

]
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...

≤
∫
B(p,3)

u2e−fdv + C

[R]+1∑
k=1

e−
2(n−1)

eθ
k.

Letting R → ∞ gives u ∈ L2
f (Hn). Combining this with [26] implies that

u must be constant. However, by Theorem 1.1, the SMMS (Hn, gHn , e−fdv),
where f = θ sin r(x) and 0 < θ < 1/4, has a non-constant bounded f -harmonic
function with u = 2 on S∞(Hn).

Below we apply Theorem 1.2 to study a decay estimate for a class of f -
harmonic functions on SMMSs with positive spectrum; this will be used in f -
volume estimates for ends in Section 5. In particular, we get a decay estimate
for f -Green’s function.

Let Gf (x, y) be a f -Green’s function on (M×M)\D, where D = {(x, x)|x ∈
M}. Then Gf (x, y) = Gf (y, x) and ∆f,yGf (x, y) = −δf,x(y) for all x ̸= y,
where δf,x(y) is a weighted delta function, defined by

∫
M
ϕ(y)δf,x(y)e

−fdv =
ϕ(x) for ϕ ∈ C∞

0 (M). Similar to Li-Tam’s construction for the Green’s function
on manifolds [16], it is not hard to see that every SMMS admits a f -Green’s
function. In [36], Wu and the second author gave a necessary and sufficient
condition of the existence of positive f -Green’s function. An end E is called to
be f -non-parabolic if it admits a positive f -Green’s function with the Neumann
boundary condition on ∂E. Otherwise, it is called to be f -parabolic.

In the following lemma, we let K denote the space of bounded f -harmonic
functions with finite weighted Dirichlet integral in (M, g, e−fdv).

Lemma 4.4. Let E be an end of n-dimensional SMMS (M, g, e−fdv) with
λ1,f (E) > 0. Then for any f -harmonic function u ∈ K, there exists a constant
c such that u− c must be in L2

f (E). Moreover, the function u− c must satisfy
the decay estimate∫

E(ρ+1)\E(ρ)

(u− c)2e−fdv ≤ Ce−2
√

λ1,f (E)ρ

for some positive constant C depending on u, λ1,f (E) and n.

Proof. The proof is the weighted version of the manifold case [15]. We include
the details for the reader’s convenience. Following [17], for a f -non-parabolic
end E1, let uρ be a sequence of f -harmonic functions satisfying ∆fuρ = 0
on B(p, ρ) with boundary condition uρ = 1 on ∂B(p, ρ) ∩ E1 and uρ = 0 on
∂B(p, ρ)\E1. The sequence of functions {uρ} must have a subsequence that
converges to a f -harmonic function u ∈ K on compact subsets of M . For
any fixed end E, since uρ has the boundary value either 0 or 1 on ∂E(ρ) =
∂B(p, ρ) ∩ E, by considering either uρ or 1 − uρ, we may assume that uρ has
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the boundary value 0 on ∂B(p, ρ) ∩ E. Define the function vρ by

vρ(x) =

{
uρ(x) on E(ρ),
0 on E\E(ρ).

Clearly, vρ is a nonnegative f -subharmonic function, which is compact sup-
ported on E. So vρ satisfies the assumption of Theorem 1.2 and the decay
estimate holds for vρ. Then the decay estimate also holds for the above con-
structed function u by letting ρ → ∞. The conclusion follows by the linear
combinations of those functions u. □

Lemma 4.4 also holds for any function u with c = 0 provided that u is the
limit of a sequence of f -harmonic functions uρ on E(ρ) satisfying uρ = 0 on
∂E(ρ) regardless of their boundary values on ∂E.

5. f-parabolicity and f-non-parabolicity

In this section, we discuss some conditions on function ϱ for an end being
f -parabolic or f -non-parabolic. When ϱ = λ1,f (M), we have some special
conclusions; these results will be used in the proof of our main results in intro-
duction.

We first provide f -volume estimates for ends, generalizing the manifold cases
[18, 19]. Since the proofs are the same as the manifold cases, we omit the
detailed proof here.

Theorem 5.1. Let E be an end of n-dimensional SMMS (M, g, e−fdv) with

the property (Pf
ϱ,0) for some positive function ϱ on M .

(1) If E is f -parabolic, then
∫
E
ϱ e−fdv < ∞ and

∫
E\Eϱ(ρ)

ϱ e−fdv ≤
C1 exp(−2ρ) for some constant C1 > 0 and for ρ sufficiently large.

(2) If E is f -non-parabolic, then
∫
Eϱ(ρ+1)\Eϱ(ρ)

ϱ e−fdv ≥ C2 exp(2ρ) for

some constant C2 > 0 and for ρ sufficiently large.

When ϱ = λ1,f (E) > 0, by a similar argument of [18], we have f -volume
estimates for ends by using Theorem 1.2 and Lemma 4.4. Let VE,f (ρ) be the
f -volume of E(ρ), i.e., VE,f (ρ) =

∫
E(ρ)

e−fdv, and the f -volume of the end E

is denoted by VE,f (∞).

Corollary 5.2. Let E be an end of n-dimensional SMMS (M, g, e−fdv) with
λ1,f (E) > 0.

(1) If E is f -parabolic, then

(15) VE,f (∞)− VE,f (ρ) ≤ C1e
−2

√
λ1,f (E)ρ

for some constant C1 > 0 depending on E.
(2) If E is f -non-parabolic, then

VE,f (ρ) ≥ C2e
2
√

λ1,f (E)ρ

for all ρ ≥ R0 + 1 and some constant C2 > 0 depending on E.
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Remark 5.3. Corollary 5.2 implies that if λ1,f (E) > 0, then an end E must
either be f -non-parabolic or have finite f -volume.

Theorem 1.2 also implies that a precise decay estimate for annuluses, which
will be used to estimate the number of ends on SMMSs in the following section.

Corollary 5.4. Let (M, g, e−fdv) be n-dimensional SMMS. Assume E is an

end of M with respect to a compact ball B(p,R0) such that λ1,f (E) > 0. If E
is a f -parabolic end, then

Vf (p, ρ+ 1)− Vf (p, ρ)

≤
√
λ1,f (E) + 1

λ1,f (E)
e2
√

λ1,f (E)(R0+1−ρ)
[
Vf (p,R0 + 1)− Vf (p,R0)

]
for all ρ > R0 + 1.

Proof. By (15), if λ1,f (E) > 0, then E is f -parabolic if and only if its f -volume
is finite. Using this fact and letting u = 1 in Theorem 1.2, we get that

VE,f (ρ+ 1)− VE,f (ρ)

≤
√
λ1,f (E) + 1

λ1,f (E)
e2
√

λ1,f (E)(R0+1−ρ)
[
VE,f (R0 + 1)− VE,f (R0)

]
for all ρ > R0+1. In particular, let E =M\B(p,R0) and the result follows. □

6. Ends on SMMS with finite f-volume

In this section, we apply Theorem 1.2 to estimate the number of ends on
SMMSs with finite f -volume. Let N(M) be the number of ends of M , that is,
N(M) is the number of unbounded connected component of M\B(p,R) when
R → ∞. Clearly, N(M) is independent of the base point p and the metric
of M , and it is a topological invariant. The bottom of Neumann spectrum
µ1,f (M) of f -Laplacian is defined by

µ1,f (M) := inf

{∫
M

|∇ϕ|2e−fdv∫
M
ϕ2e−fdv

∣∣∣∣ϕ ∈ H1,2
f (M) and

∫
M

ϕe−fdv = 0

}
,

where H1,2
f (M) is the weighted Hilbert space. Note that µ1,f (M) might not be

an eigenvalue, but it is linked with the first Dirichlet eigenvalue by µ1,f (M) ≤
max{λ1,f (Ω1)), λ1,f (Ω2)}, where Ω1 and Ω2 are two disjoint domains of M ,
and λ1,f (Ωi)) is the first Dirichlet eigenvalue of f -Laplacian on Ωi, i = 1, 2.
We have the following main result of this section.

Theorem 6.1. Let (M, g, e−fdv) be an n-dimensional SMMS with Vf (M) <∞
and a base point p ∈M . For 0 < m <∞, assume that Ricmf ≥ −(n+m− 1)K

for some constant K > 0. If µ1,f (M) ≥ 1
4 (n +m − 1)2K, then there exists a
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constant C(n+m,K) depending on n+m and K such that the number of ends
of M satisfies

N(M) ≤ C(n+m,K)

(
Vf (M)

Vf (p, 1)

)2

ln

(
Vf (M)

Vf (p, 1)

)
,

where Vf (p, 1) denotes the weighted volume of the geodesic ball B(p, 1).

When f is constant, Theorem 6.1 returns to Li-Wang’s result [20]. Dung-
Khanh-Son proved the finite number of ends when Ricf ≥ −(n−1) and |∇f | ≤
α (see Theorem 1.2 in [8]). We observe that Ricf ≥ −(n − 1) and |∇f | ≤ α
implies Ricαf ≥ −(n+ α− 1). Therefore, Dung-Khanh-Son’s result is regarded
as a special case of Theorem 6.1.

The proof of Theorem 6.1 is similar to Li-Wang’s argument [20]. It re-
lies on Qian’s volume comparison [27] (Lemma 3.1), L2

f -decay estimates of

f -subharmonic functions (Theorem 1.2) and upper bounds of the first Dirich-
let eigenvalue (Lemma 6.3). We begin with a key proposition for preparing our
proof.

Proposition 6.2. Let (M, g, e−fdv) be an n-dimensional SMMS with Vf (M) <
∞. Assume Ricmf ≥ −(n+m−1)K for some constants K > 0. If there exist a

point p ∈M and R0 > 0 such that λ1,f (M\B(p,R0)) ≥ 1
4 (n+m− 1)2K, then

there exists a constant C(n+m,K) depending only on n+m and K such that

N(M) ≤ C(n+m,K)e(n+m−1)
√
KR0 · Vf (M)

Vf (p, 1)
.

Munteanu-Wang [24] and Su-Zhang [29] independently proved that if Ricf ≥
−(n − 1), |∇f | ≤ α and λ1,f (M) ≥ 1

4 (n − 1 + α)2, then such SMMS has at
most two ends. Since λ1,f (M\B(p,R0)) ≥ λ1,f (M), Proposition 6.2 may be
regarded as an extension of their results about number estimates of ends.

Proof. For any y ∈ ∂B(p,R+1), where R > 2(R0+1), then B(p, 1) ⊂ B(y,R+
2). Under the assumption of Proposition 6.2, by Lemma 3.1, for R ≥ τ0 and
0 < τ0 ≤ 1, we have

Vf (y,R) ≤ C(n+m,K)e(n+m−1)
√
K(R+2)Vf (y, τ0).

So Vf (p, 1) ≤ Vf (y,R+2) ≤ C(n+m,K)e(n+m−1)
√
K(R+2)Vf (y, τ0) and hence

(16) Vf (y, τ0) ≥ C(n+m,K)−1e−(n+m−1)
√
K(R+2)Vf (p, 1)

for y ∈ ∂B(p,R+ 1).
Adapting Li-Wang’s argument [20], let N(R) be the number of ends with

respect toB(p,R), that is,M\B(p,R) hasN(R) unbounded components. Then
there exists N(R) number of points {yi ∈ ∂B(p,R + 1)} and 0 < r0(R) ≤ 1
such that B(yi, r0(R)) ∩ B(yj , r0(R)) = ∅ for i ̸= j. Applying (16) to each of
the yi with τ0 = r0(R), we get
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N(R)Vf (p, 1)

Ce(n+m−1)
√
K(R+2)

≤
N(R)∑
i=1

Vf (yj , r0(R))

≤ Vf (p,R+ 2)− Vf (p,R)

= [Vf (p,R+ 2)− Vf (p,R+ 1)] + [Vf (p,R+ 1)− Vf (p,R)]

≤ c(n+m,K)e(n+m−1)
√
K(R0−R)

[
Vf (p,R0 + 1)− Vf (p,R0)

]
for R > 2(R0 +1), where we used Corollary 5.4 and the eigenvalue assumption
in the last inequality. The above estimate further reduces to

(17) N(R) ≤ C(n+m,K)e(n+m−1)
√
KR0 · Vf (p,R0 + 1)− Vf (p,R0)

Vf (p, 1)

for all R > 2(R0 + 1). Letting R→ ∞ in (17), the proposition follows. □

Proposition 6.2 shows that if we can control the size of R0 in terms of the
first Dirichlet eigenvalue below, then SMMS has finitely many ends (without
the finite assumption on Vf (M)). At present we do not know how to control
the R0. However, the following lemma allows us to estimate λ1,f (B(p,R)) in
terms of the f -volume of its geodesic ball, which is the same as the manifold
case [19].

Lemma 6.3. Let λ1,f (B(p,R)) be a first Dirichlet eigenvalue of ∆f in B(p,R),
R > 2, in an n-dimensional SMMS (M, g, e−fdv). Then for any 0 < δ < 1,

λ1,f (B(p,R)) ≤ 1

4δ2(R− 1)2

{
ln

[(
81

1− δ

)(
Vf (p,R)

Vf (p, 1)

)]}2

.

In particular, λ1,f (M) ≤ 1
4 (lim inf

R→∞
lnVf (p,R)

R )2.

In the end of this section we use Lemma 6.3 and Proposition 6.2 to prove
Theorem 6.1. The argument is the same as [20] and we provide the detail for
the completeness.

Proof of Theorem 6.1. Let p ∈M be a fixed point. For any 0 < δ < 1, let

R0 =
1

(n+m− 1)
√
Kδ

ln

[(
81

1− δ

)(
Vf (M)

Vf (p, 1)

)]
+ 1.

Substituting R0 into Lemma 6.3 gives λ1,f (B(p,R0)) ≤ 1
4 (n+m− 1)2K. Now

we claim that λ1,f (M\B(p,R0)) ≥ 1
4 (n+m−1)2K. If this claim is not true, by

the variational principle, we get µ1(M) < 1
4 (n+m− 1)2K, which contradicts

our assumption. Under the above spectrum condition, Proposition 6.2 implies

N(M) ≤ C(n+m,K)e(n+m−1)
√
KR0 · Vf (M)

Vf (p,1)
. Putting the value of R0 into this

estimate and letting δ = 1− (ln
Vf (M)
Vf (p,1)

)−1, we get the desired estimate. □
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7. Ends with infinite f-volume

In this section, we prove Theorem 1.4. It states that if the gradient of weight
function is bounded and the Bakry-Émery Ricci tensor has a lower bound at
infinity, then the SMMS has finitely many ends with infinite f -volume.

As is well known, f -harmonic functions are characterized as critical points of
Dirichlet energy

∫
M

|∇u|2e−fdv. If u is f -harmonic and
∫
M

|∇u|2e−fdv < ∞,
then u is said to be finite f -energy.

According to Li-Tam’s theory [17], to count the number of f -non-parabolic
ends, we only need to estimate the dimension of the space of bounded f -
harmonic functions with finite f -energy. For the convenience of the reader,
we briefly recall Li-Tam’s theory. For our purpose, we assume M has at least
two f -non-parabolic ends. Then there exists R0 > 0 such thatM\B(p,R0) has
at least two disjoint f -non-parabolic ends E1 and E2. For E1, we can construct
a non-constant bounded f -harmonic function with finite f -energy as follows.
For R ≥ R0, let uR be the solution to the following Cauchy problem ∆fuR = 0 on B(p,R),

uR = 1 on ∂E1(R) := E1 ∩B(p,R),
uR = 0 on ∂B(p,R)\E1.

Clearly, ∂E2(R) ⊂ (∂B(p,R)\E1). Since E1 and E2 are f -non-parabolic, the
sequence of functions uR has a subsequence that converges to an f -harmonic
function u. Moreover, u has the property that supM u = supE1

u = 1 and
infM u = infEi

u = 0 for the other f -non-parabolic ends Ei. In particular,
u is bounded and has finite f -energy. We can use this construction on each
f -non-parabolic end and get as many linear independent f -harmonic functions,
adding the constant function, as the number of f -non-parabolic ends. As in
Lemma 4.4, let K denote the space of bounded f -harmonic functions with
finite f -energy. If (M, g, e−fdv) (or all its ends) has positive spectrum, then
the number of infinite f -volume ends is less than dim K.

From the above discussion, we see that if we can estimate dim K, then
Theorem 1.4 immediately follows. To estimate dim K, we need the following
lemma.

Lemma 7.1. Under the same assumptions of Theorem 1.4, for each u ∈ K,

the function g := |∇u|
k−2
k−1 , where k ≥ n + α

2 λ1,f (M\B(p,R0))
−1/2, satisfies∫

B(p,2R)\B(p,R)
g2e−fdv → 0 for sufficient large R.

Proof. For simplicity we omit the notation e−fdv in the following integrals. By
the Hölder inequality, we have

∫
B(p,2R)\B(p,R)

g2 ≤

[∫
B(p,2R)\B(p,R)

exp
(
−2(k − 2)

√
λ1,f r

)] 1
k−1

(18)
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×

[∫
B(p,2R)\B(p,R)

|∇u|2 exp
(
2
√
λ1,f r

)] k−2
k−1

,

where λ1,f = λ1,f (M\B(p,R0)). Below we shall estimate the first term of the
right hand side of (18). Under our assumption ∂rf ≥ −α, we have Wei-Wylie’s
comparison [33] of the weighted area of geodesic sphere

Af (B(p, r)) ≤ CeαrAΘ(B(r)) ≤ C exp
[(
α+ (n− 1)

√
−Θ

)
r
]
,

where AΘ(B(r)) denotes the area of geodesic sphere of radius r in the n-
dimensional constant curvature space form with non-negative sectional cur-
vature given by

Θ := − k − 1

(n− 1)(k − 2)
λ1,f (M\B(p,R0)) +

α2

(n− 1)(k − n)
+

ϵ

n− 1
.

Using this estimate, we have

(19)

∫
B(p,2R)\B(p,R)

exp
(
−2(k − 2)

√
λ1,fr

)
≤ C

∫ 2R

R

exp
(
−2(k − 2)

√
λ1,fr

)
exp

((
α+ (n− 1)

√
−Θ

)
r
)
dr

< C

∫ 2R

R

exp

[(
−2(k − 2)

√
λ1,f + α+

√
(k − 1)(n− 1)

k − 2

√
λ1,f

)
r

]
dr.

Since k ≥ n+ α
2 λ1,f (M\B(p,R0))

−1/2, we directly check that

(20) −2(k − 2)
√
λ1,f + α+

√
(k − 1)(n− 1)

k − 2

√
λ1,f < 0

and the right hand side of (19) exponentially decays to 0. Moreover, by Lemma
4.4, the second term of the right hand side of (18) can be estimated by∫

B(p,2R)\B(p,R)

|∇u|2 exp
(
2
√
λ1,f r

)
≤ CR

for sufficiently large R. Combining these, the desired conclusion follows. □

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. From the preceding discussion, it sufficient to estimate

dimK. Under our theorem assumptions, by Lemma 3.2, g = |∇u|
k−2
k−1 satisfies

(21) ∆fg ≥
(

k−2
k−1ϵ− λ1,f

)
g

on M\B(p,R0), where k ≥ n+ α
2 λ

−1/2
1,f and λ1,f := λ1,f (M\B(p,R0)).
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On the other hand, we consider any non-negative smooth cut-off function ψ
supported in M\B(p,R0). Then,

(22)

∫
M

|∇(ψg)|2 =

∫
M

|∇ψ|2g2 +
∫
M

ψ2|∇g|2 + 2

∫
M

ψg∇ψ∇g.

We remark that the above and the following integrals are all discussed with
respect to the weighted measure e−fdv. Here we suppress the notation. Since

2

∫
M

ψg∇ψ∇g = −
∫
M

ψ2|∇g|2 −
∫
M

ψ2g∆fg,

by (22) and (21), we have

(23)

∫
M

|∇(ψg)|2 =

∫
M

|∇ψ|2g2 −
∫
M

ψ2g∆fg

≤
∫
M

|∇ψ|2g2 +
(
λ1,f − k−2

k−1ϵ
)∫

M

ψ2g2.

The variational property of λ1,f gives λ1,f
∫
M
ψ2g2 ≤

∫
M

|∇(ψg)|2 for any non-
negative smooth cut-off function ψ supported in M\B(p,R0). Combining this
with (23) yields

k−2
k−1ϵ

∫
M

ψ2g2 ≤
∫
M

|∇ψ|2g2

for any non-negative smooth cut-off function ψ supported in M\B(p,R0). In
particular we choose ψ such that

ψ(x) =

 0 x ∈ B(p,R0),
1 x ∈ B(p,R)\B(p, 2R0),
0 x ∈M\B(p, 2R),

|∇ψ| ≤ C/R0 on B(p, 2R0)\B(p,R0) and |∇ψ| ≤ C/R on B(p, 2R)\B(p,R)
for some constant C > 0. Then,

k−2
k−1ϵ

∫
M\B(p,2R0)

g2 ≤ C

R2
0

∫
B(p,2R0)\B(p,R0)

g2,

where we used Lemma 7.1. Using this, we have

(24)

∫
B(p,3R0)

g2 =

∫
B(p,2R0)

g2 +

∫
B(p,2R0)\B(p,2R0)

g2

≤
(
1 +

C(k − 1)

(k − 2)ϵR2
0

)∫
B(p,2R0)

g2.

On B(p, 3R0) ⊂ M , Ricf ≥ −Λ, where Λ := supB(p,3R0) |Ricf |. Also f is

smooth onM and hence |∇f | ≤ A′(3R0) for some constant A′(3R0) depending
only on p and 3R0. Indeed, we can let A′(3R0) := supB(p,3R0) |∇f |. Combin-
ing these restrictions and Lemma 3.2, g satisfies ∆fg ≥ −λg for some constant
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λ(Λ, A′(3R0), n, k) ≥ 0 on B(p, 3R0). By the f -mean value inequality, Propo-
sition 3.3, for any x ∈ B(p, 2R0), we have

g2(x) ≤ C

Vf (x,R0)

∫
B(x,R0)

g2 ≤ C

Vf (x,R0)

∫
B(p,3R0)

g2,

where C is a constant depending only on n, k, A′(3R0), Λ and R0. Combining
this with (24) gives that

sup
B(p,2R0)

g2 ≤ C

∫
B(p,2R0)

g2,

where C is a constant depending only on n, k, R0, ϵ, infx∈B(p,2R0) Vf (x,R0),
A′(3R0) and Λ.

On the other hand, the Cauchy-Schwarz inequality gives that∫
B(p,2R0)

g2 ≤

(∫
B(p,2R0)

|∇u|2
) k−2

k−1

Vf (p, 2R0)
1

k−1 .

Therefore,

(25) sup
B(p,2R0)

|∇u|2 ≤ C

∫
B(p,2R0)

|∇u|2,

where C is a constant depending only on n, k, R0, ϵ, infx∈B(p,2R0) Vf (x,R0),
A′(3R0), Λ and Vf (p, 2R0). Here if function u is not constant, then it im-
plies

∫
B(p,2R0)

|∇u|2 ̸= 0 by unique continuation. Hence the bilinear form∫
B(p,2R0)

⟨∇u1∇u2⟩ is non-degenerate on the linear space of one forms K̃ :=

{du|u ∈ K}. Using Lemma 11 of [14], there exists du0 ∈ K̃\{0} such that

dimK̃

∫
B(p,2R0)

|du0|2 ≤ Vf (p, 2R0) ·
(
min{n, dimK̃}

)
· sup
B(p,2R0)

|du0|2,

which, combining with (25), gives dimK = dimK̃ + 1 ≤ C, where constant C
depends on n, k, R0, ϵ, A

′(3R0), Λ, infx∈B(p,2R0) Vf (x,R0) and Vf (p, 2R0). □

8. Dimension of H1(L2
f(M))

In this section, we study the dimension of space of L2
f -harmonic one-forms.

A differential form ω is said to be L2
f if

∫
M

|ω|2e−fdv < ∞. The formal

adjoint of exterior derivative d with respect to the L2
f -inner product is given

by δf := δ + ι∇f , where ι∇f is the interior product with the vector field ∇f .
The associated f -Hodge Laplacian is defined by ∆f := −(dδf + δfd). The first
L2
f -cohomology of M , denoted by H1(L2

f (M)), is the space of L2
f -harmonic

one-forms, that is, it is the set of all L2
f one-forms satisfying ∆f ω = 0.

When λ1,f (M) > 0, we will study the dimension of H1(L2
f (M)) on SMMSs

with a more restriction on Ricf . Before stating the result, we recall a weighted
version of Li-Wang’s integral inequality [18].
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Lemma 8.1. Let (M, g, e−fdv) be an n-dimensional SMMS. Let u be a non-
negative function in M satisfying

u∆fu ≥ −au2 + b|∇u|2,

where a and b ≥ 0 are constants. Then for any δ > 0 and a smooth cut-off
function ψ supported in M , we have∫

M

|∇(ψu)|2e−fdv ≤ (1 + δ)a

1 + δ(1 + b)

∫
M

(ψu)2e−fdv

+

(
1 +

δ2b

1 + δ(1 + b)

)∫
M

|∇ψ|2u2e−fdv.

We now give an exact description for the first L2
f -cohomology of M . This

generalizes Li-Wang’s result [18] to the weighted case. The result is stronger
than Theorem 1.4.

Theorem 8.2. Let (M, g, e−fdv) be an n-dimensional SMMS. Assume that
|⟨∇f, ω⟩| ≤ α|ω| for any f -harmonic one-form ω, where α ≥ 0 is a constant.
If λ1,f (M) > 0 and

Ricf ≥ − k

k − 1
λ1,f (M) +

α2

k − n
+ ϵ

for some k ≥ n and some ϵ > 0, then H1(L2
f (M)) = {0}.

Remark 8.3. Since the exterior differential of a f -harmonic function with finite
f -integral is an L2

f harmonic one-form, the number of f -non-parabolic ends

is less than dimH1(L2
f (M)) + 1. If further λ1,f (M) > 0, then number of

infinite f -volume ends is less than dimH1(L2
f (M)) + 1. Hence our estimate on

H1(L2
f (M)) is stronger than the estimate on the number of ends with infinite

f -volume.

Proof of Theorem 8.2. Let ω ∈ H1(L2
f (M)). By Lemma 3.1 in [32], the length

of ω, denoted by u = |ω|, satisfies the Bochner type formula u∆fu + |∇u|2 =
Ricf (ω, ω)+|∇ω|2. By Lemma 3.2 in [32], we see that, for any ω ∈ H1(L2

f (M)),

|∇ω|2 ≥ 1

n− 1

(
|∇u| − ⟨∇f, ω⟩

)2
+ |∇u|2.

Using the assumption |⟨∇f, ω⟩| ≤ αu and the Cauchy-Schwarz inequality, we
further get

|∇ω|2 ≥ 1

n− 1

(
|∇u|2

1 + k−n
n−1

− ⟨∇f, ω⟩2
k−n
n−1

)
+ |∇u|2 ≥ k

k − 1
|∇u|2 − α2

k − n
u2.

for some k ≥ n. Hence

(26) u∆fu ≥ Ricf (ω, ω) +
1

k − 1
|∇u|2 − α2

k − n
u2.
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Combining the curvature assumption of theorem, we have

u∆fu ≥
(
− k

k − 1
λ1,f (M) + ϵ

)
u2 +

1

k − 1
|∇u|2.

Applying this inequality to Lemma 8.1 by letting a = − k
k−1λ1,f (M) + ϵ and

b = 1
k−1 , we get∫

M

|∇(ψu)|2e−fdv ≤
[
k(1 + δ)λ1,f (M)

(k − 1) + δk
− ϵ(k − 1)(1 + δ)

(k − 1) + δk

] ∫
M

(ψu)2e−fdv

+
(k − 1) + δ(δ + k)

(k − 1) + δk

∫
M

|∇ψ|2u2e−fdv.

Below all integrals are considered with respect to e−fdv. By the variational
principle of λ1,f (M), we have λ1,f (M)

∫
M
(ψu)2 ≤

∫
M

|∇(ψu)|2. Combining
these yields[

ϵ(k − 1)(1 + δ)− λ1,f (M)
] ∫

M

(ψu)2 ≤
[
(k − 1) + δ(δ + k)

] ∫
M

|∇ψ|2u2.

For R > 0, we let ψ be ψ = 1 on B(p,R), ψ = 0 outside B(p, 2R) and
|∇ψ| ≤ C/R on B(p, 2R)\B(p,R). Hence, the above inequality becomes

[ϵ(k− 1)(1 + δ)− λ1,f (M)]

∫
B(p,R)

u2 ≤ C [(k−1) + δ(δ+k)]

R

∫
B(p,2R)\B(p,R)

u2.

Since u ∈ L2
f (M), letting R → ∞, the right hand side tends to 0 and hence

u ≡ 0 by choosing δ sufficiently large such that ϵ(k− 1)(1+ δ) > λ1,f (M). The
theorem follows. □

If a weak condition of Ricf is given on SMMSs with certain Sobolev inequal-
ity, we also prove a finite dimensional property of H1(L2

f (M)), i.e., Theorem
1.5 in introduction.

Proof of Theorem 1.5. Since any end E of M satisfies the Sobolev inequality,
from Chapter 20 of [15], we know that each end is f -non-parabolic. Moreover,
by Remark 8.3, to show our theorem, it suffices to prove dimH1(L2

f (M)) <∞.

From the proof of Theorem 8.2, we see that u = |ω|, where ω ∈ H1(L2
f (M)),

satisfies the Bochner formula (26). Combining our curvature assumption, we
get that

u∆fu ≥ −τ(x)u2 + 1

k − 1
|∇u|2.

for some constant k > n. For a geodesic ball B(p,R0) and any non-negative
supported function ψ ∈ C∞

0 (M\B(p,R0)), multiplying by ψ2 in the above
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inequality and integrating by parts, we have

(27)

1

k − 1

∫
M\B(p,R0)

ψ2|∇u|2

≤−
∫
M\B(p,R0)

2ψu∇ψ∇u+

∫
M\B(p,R0)

τ2ψ2u2.

Notice that,

(28)

∫
M\B(p,R0)

2ψu∇ψ∇u ≤ ϵ

∫
M\B(p,R0)

|∇u|2ψ2+ϵ−1

∫
M\B(p,R0)

|∇ψ|2u2,

where ϵ > 0 is a constant that will be determined later. Also notice that∫
M\B(p,R0)

τ2ψ2u2 ≤

(∫
M\B(p,R0)

τ
ν

ν−2

) ν−2
ν
(∫

M\B(p,R0)

(ψu)p

) 2
ν

≤ Cs

(∫
M\B(p,R0)

τ
ν

ν−2

) ν−2
ν ∫

M\B(p,R0)

|∇(ψu)|2,

where we used the Sobolev inequality in the last inequality. Since
∫
M
τ

ν
ν−2 <

∞, we can choose R0 > 1 sufficiently large such that

η := Cs

(∫
M\B(p,R0)

τ
ν

ν−2

) ν−2
ν

<
1

k − 1
< 1.

Therefore,

(29)

∫
M\B(p,R0)

τ2ψ2u2 ≤ η

∫
M\B(p,R0)

|∇(ψu)|2.

Substituting (29) and (28) into (27) yields

1

k − 1

∫
M\B(p,R0)

|∇u|2ψ2

≤ 2(η−1)

∫
M\B(p,R0)

ψu∇ψ∇u+η
∫
M\B(p,R0)

|∇ψ|2u2+η
∫
M\B(p,R0)

|∇u|2ψ2

≤ (η + (1− η)ϵ)

∫
M\B(p,R0)

|∇u|2ψ2 +
(
(1− η)ϵ−1 + η

) ∫
M\B(p,R0)

|∇ψ|2u2.

Since η < 1
k−1 , we may choose ϵ sufficiently small such that η+(1−η)ϵ < 1

k−1 .
Hence the preceding estimate implies that∫

M\B(p,R0)

|∇u|2ψ2 ≤ C1

∫
M\B(p,R0)

|∇ψ|2u2
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for some constant C1 > 0. Moreover, the Sobolev inequality assumption implies
that(∫

M\B(p,R0)

(ψu)ν

)2/ν

≤ Cs

∫
M\B(p,R0)

|∇(ψu)|2

≤ 2Cs

∫
M\B(p,R0)

|∇ψ|2u2 + 2Cs

∫
M\B(p,R0)

|∇u|2ψ2.

Combining the above two estimates, we obtain that

(30)

(∫
M\B(p,R0)

(ψu)ν

)2/ν

≤ C2

∫
M\B(p,R0)

|∇ψ|2u2

for some constant C2 > 0.
For any R > 2R0 > 2, we choose ψ such that

ψ(x) =

 0 x ∈ B(p,R0),
1 x ∈ B(p,R)\B(p, 2R0),
0 x ∈M\B(p, 2R).

The above cut-off function ψ simultaneously satisfies |∇ψ| ≤ C3/R0 < C3 on
B(p, 2R0)\B(p,R0) and |∇ψ| ≤ C3/R on B(p, 2R)\B(p,R) for some constant
C3 > 0. Applying this function ψ to (30) yields(∫

B(p,R)\B(p,2R0)

uν

)2/ν

≤ C4

∫
B(p,2R0)\B(p,R0)

u2 +
C4

R2

∫
B(p,2R)\B(p,R)

u2

for some constant C4 > 0. Since u ∈ L2
f (M), letting R → ∞, the second term

of the right hand side tends to 0 and hence(∫
M\B(p,2R0)

uν

)2/ν

≤ C4

∫
B(p,2R0)\B(p,R0)

u2.

Notice that the Cauchy-Schwarz inequality implies that∫
B(p,2R0)\B(p,R0)

u2 ≤ Vf (p, 2R0)
2/ν

(∫
B(p,2R0)\B(p,R0)

uν

)2/ν

.

Together these yields that

(31)

∫
B(p,2R0)

u2 ≤ C5

∫
B(p,R0)

u2

for some constant C5 > 0 depending on Vf (p, 2R0) and ν.
On the other hand, since Ricf ≥ −Λ, where Λ := supB(p,2R0) |Ricf | on

B(p, 2R0), then

∆fu
2 = 2Ricf (ω, ω) + 2|∇ω|2 ≥ −2Λu2
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on B(p, 2R0). By the f -mean value inequality, i.e., Proposition 3.3, for any
x ∈ B(p,R0),

u2(x) ≤ C6

Vf (x,R0)

∫
B(x,R0)

u2 ≤ C6

Vf (x,R0)

∫
B(p,2R0)

u2,

where C6 is a constant depending on n, R0, A
′(2R0) and Λ. Combining this

with (31) yields supB(p,R0) u
2 ≤ C7

∫
B(p,R0)

u2, where C7 is a constant depend-

ing on n, R0, A
′(2R0), Λ, and infx∈B(p,R0) Vf (x,R0). This inequality is the

same as (25). So, we can follow the argument of Theorem 1.4 and finally prove
dimH1(L2

f (M)) <∞. □

Finally we give another version of Theorem 1.5 when only Ricmf (m <∞) is
bounded below (without any assumption on f). Its proof is similar to the case
of Ricf so we omit the repeated proof here.

Theorem 8.4. Let (M, g, e−fdv) be an n-dimensional SMMS with a Sobolev
inequality (∫

M

|ϕ|νe−fdv

)2/ν

≤ Cs

∫
M

|∇ϕ|2e−fdv

for all ϕ ∈ C∞
0 (M), where ν > 2 and Cs > 0 are constants. If Ricmf ≥ −τ(x)

for some non-negative function τ ∈ C∞(M) with
∫
M
τ

ν
ν−2 e−fdv <∞, then M

has finitely many ends.
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ture bounded below, Geom. Dedicata 160 (2012), 321–331. https://doi.org/10.1007/

s10711-011-9685-x

[30] D. Sullivan, The Dirichlet problem at infinity for a negatively curved manifold, J. Dif-

ferential Geom. 18 (1983), no. 4, 723–732 (1984). http://projecteuclid.org/euclid.
jdg/1214438179

[31] J. Tang and J.-Y. Wu, Cheeger-Gromoll splitting theorem for the Bakry-Emery Ricci

tensor, Arch. Math. (Basel) 117 (2021), no. 6, 697–708. https://doi.org/10.1007/

s00013-021-01658-1

[32] M. Vieira, Harmonic forms on manifolds with non-negative Bakry-Émery-Ricci cur-
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