DOI QR코드

DOI QR Code

Multistage interference cancellation for cyclic interleaved frequency division multiplexing

  • G. Anuthirsha (Electronics and Communication Engineering, University College of Engineering) ;
  • S. Lenty Stuwart (Electronics and Communication Engineering, University College of Engineering)
  • 투고 : 2023.07.14
  • 심사 : 2023.10.24
  • 발행 : 2024.10.10

초록

Cyclic interleaved frequency division multiplexing (CIFDM), a variant of IFDM, has recently been proposed. While CIFDM employs cyclic interleaving at the transmitter to make multipath components resolvable at the receiver, the current approach of matched filtering followed by multipath combining does not fully exploit the diversity available. This is primarily because the correlation residues among the codes have a significant impact on multipath resolution. As a solution, we introduce a novel multipath successive interference cancellation (SIC) technique for CIFDM, which replaces the conventional matched filtering approach. We have examined the performance of this proposed CIFDM-SIC technique and compared it with the conventional CIFDMmatched filter bank and IFDM schemes. Our simulation results clearly demonstrate the superiority of the proposed scheme over the existing ones.

키워드

과제정보

Science and Engineering Research Board of the Department of Science and Technology, Government of India, Grant/Award Number: ECR/2017/001188

참고문헌

  1. A. Dogra, R. K. Jha, and S. Jain, A survey on beyond 5G network with the advent of 6G: architecture and emerging technologies, IEEE Access 9 (2021), 67512-67547.
  2. Z. E. Ankarali, B. Pekoz, and H. Arslan, Flexible radio access beyond 5G: a future projection on waveform, numerology, and frame design principles, IEEE Access 5 (2017), 18295-18309.
  3. C. -X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas, J. S. Thompson, E. G. Larsson, M. Di Renzo, W. Tong, P. Zhu, X. Shen, H. V. Poor, and L. Hanzo, On the road to 6G: visions, requirements, key technologies, and testbeds, IEEE Commun. Surv. Tutor. 25 (2023), no. 2, 905-974.
  4. M. Agiwal, H. Kwon, S. Park, and H. Jin, A survey on 4G-5G dual connectivity: road to 5G implementation, IEEE Access 9 (2021), 16193-16210.
  5. A. F. M. S. Shah, A. N. Qasim, M. A. Karabulut, H. Ilhan, and M. B. Islam, Survey and performance evaluation of multiple access schemes for next-generation wireless communication systems, IEEE Access 9 (2021), 113428-113442.
  6. T. Kebede, Y. Wondie, J. Steinbrunn, H. B. Kassa, and K. T. Kornegay, Multi-carrier waveforms and multiple access strategies in wireless networks: performance, applications, and challenges, IEEE Access 10 (2022), 21120-21140.
  7. H. G. Myung, J. Lim, and D. J. Goodman, Single carrier FDMA for uplink wireless transmission, IEEE Veh. Technol. Mag. 1 (2006), no. 3, 30-38.
  8. S. P. Yadav and S. C. Bera, Single carrier FDMA technique for wireless communication system, (Proc. Conf. 2015 Annual IEEE India Conference (INDICON), New Delhi, India), 2015, pp. 1-6.
  9. R. Saadia and N. M. Khan, Single carrier-frequency division multiple access radar: waveform design and analysis, IEEE Access 8 (2020), 35742-35751.
  10. T. Frank, A. Klein, and E. Costa, IFDMA: a scheme combining the advantages of OFDMA and CDMA, IEEE Wirel. Commun. 14 (2007), no. 3, 9-17.
  11. O. Takyu and M. Nakagawa, IFDM for downlink wireless access scheme and performance comparison to MC-CDM, (Proc. Conf. 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece), 2007, pp. 1-5.
  12. T. -H. Pham, Y. -C. Liang, and A. Nallanathan, A joint channel estimation and data detection receiver for multiuser MIMO IFDMA systems, IEEE Trans. Commun. 57 (2009), no. 6, 1857-1865.
  13. O. Takyu and M. Nakagawa, Frequency spectrum rotation in interleaved frequency division multiplexing, (Proc. Conf. IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference, Washington, DC, USA), 2007, 4543-4547.
  14. H. Qu, G. Liu, Y. Wang, Q. Chen, C. Yi, and J. Peng, A time-domain approach to channel estimation and equalization for the SC-FDM system, IEEE Trans. Broadcast. 65 (2019), no. 4, 713-726.
  15. S. Kumar, M. S. Chaudhari, R. Gupta, and S. Majhi, Multiple CFOs estimation and implementation of SC-FDMA uplink system using oversampling and iterative method, IEEE Trans. Veh. Technol. 69 (2020), no. 6, 6254-6263.
  16. S. C. Liew and Y. Shao, New transceiver designs for interleaved frequency-division multiple access, IEEE Trans. Wirel. Commun. 19 (2020), no. 12, 7765-7778.
  17. Y. Shao and S. C. Liew, Flexible subcarrier allocation for interleaved frequency division multiple access, IEEE Trans. Wirel. Commun. 19 (2020), no. 11, 7139-7152.
  18. D. Kim, H. -M. Kim, and G. -H. Im, Iterative channel estimation with frequency replacement for SC-FDMA systems, IEEE Trans. Commun. 60 (2012), no. 7, 1877-1888.
  19. J. Ji, G. Ren, and H. Zhang, PAPR reduction of SC-FDMA signals via probabilistic pulse shaping, IEEE Trans. Veh. Technol. 64 (2015), no. 9, 3999-4008.
  20. D. Sinanovic, G. Sisul, and B. Modlic, Low-PAPR spatial modulation for SC-FDMA, IEEE Trans. Veh. Technol. 66 (2017), no. 1, 443-454.
  21. K. -B. Png, X. Peng, F. Chin, and C. C. Ko, Mobility-based interference cancellation scheme for BS-IFDMA systems with optimum code assignment, IEEE Trans. Veh. Technol. 62 (2013), no. 5, 2105-2117.
  22. W. Li, O. Takyu, K. Adachi, and M. Nakagawa, Performance evaluation of decision directed channel estimation for single user IFDMA, (Proc. Conf. 2008 IEEE Radio and Wireless Symposium, Orlando, FL, USA), 2008, pp. 659-662.
  23. S. L. Stuwart and T. Selvi, Zero intersymbol interference multiuser system: a new architecture utilising m-sequence cyclic property, IET Commun. 9 (2015), no. 15, 1924-1931.
  24. J. A. Kumar and S. L. Stuwart, Cyclic interleaving scheme for an IFDMA system, Ann. Telecommun. 75 (2020), no. 5-6, 241-252.
  25. J. A. Kumar and S. L. Stuwart, Intersymbol interference resilient interleaving architecture for multi-stream interleaved frequency division multiple access system, Int. J. Commun. Sys. 63 (2023), 1-21.