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Abstract

Anomaly detection in video surveillance is crucial but challenging due to the

rarity of irregular events and ambiguity of defining anomalies. We propose a

method called AONet that utilizes a spatiotemporal module to extract spatio-

temporal features efficiently, as well as a residual autoencoder equipped with

an attention network for effective future frame prediction in video anomaly

detection. AONet utilizes a novel activation function called OptAF that com-

bines the strengths of the ReLU, leaky ReLU, and sigmoid functions. Further-

more, the proposed method employs a combination of robust loss functions to

address various aspects of prediction errors and enhance training effectiveness.

The performance of the proposed method is evaluated on three widely used

benchmark datasets. The results indicate that the proposed method outper-

forms existing state-of-the-art methods and demonstrates comparable perfor-

mance, achieving area under the curve values of 97.0%, 86.9%, and 73.8% on

the UCSD Ped2, CUHK Avenue, and ShanghaiTech Campus datasets, respec-

tively. Additionally, the high speed of the proposed method enables its applica-

tion to real-time tasks.
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1 | INTRODUCTION

In computer vision, anomaly detection in the context of
video surveillance has attracted considerable attention
because it enables numerous applications, including
monitoring traffic accidents and detecting unauthorized
or criminal activities [1, 2]. However, this task is diffi-
cult for several reasons. First, gathering and annotating
various abnormal events is challenging because of their
rarity compared with normal events [3, 4]. Second, the

nature of what defines an “anomaly” is ambiguous.
Activities can be deemed anomalous or normal depend-
ing on specific circumstances. For example, observing a
person placing a package near someone’s front door in
a uniform during the daytime may be considered a nor-
mal activity, as they are presumed to be making a regu-
lar delivery. However, if someone wearing casual
clothing performs the same activity late at night, it may
be perceived as anomalous. Therefore, recent research
on video anomaly detection (VAD) has shifted toward
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unsupervised methods that eliminate the need for
human annotation [5, 6].

Some existing studies have employed dual-stream net-
works to detect activities that deviate from expected
behaviors [7–9]. This approach divides video analysis into
two distinct pathways: spatial and temporal. A spatial
stream processes individual video frames to capture static
visual content using convolutional neural networks
(CNNs). The temporal stream focuses on the motion
between frames, typically using optical flow or similar
motion descriptors. This dual approach allows the result-
ing system to detect anomalies in both content and move-
ment concurrently within videos. However, computing
optical flow is resource intensive. An alternative method
employs recurrent neural networks (RNNs) such as varia-
tional long short-term memory (LSTM) [1, 9–11] to cap-
ture temporal movement data. However, adding
additional layers to a model significantly increases its
complexity [12, 13].

Recent studies [14–16] have employed future frame
prediction as a concept for anomaly detection. The objec-
tive of future frame models is to predict future frames
based on several previous frames. An anomaly is identi-
fied when there is a substantial discrepancy between the
predicted and actual future frames. Activation functions
(AFs) play a pivotal role in future frame reconstruction
models because they enable such models to capture and
represent complex patterns and relationships within data.
Therefore, researchers have focused on merging AFs to
extract more insights from input data [17, 18].

Within the machine learning paradigm, attention
mechanisms emulate human focus by emphasizing cer-
tain input sections such as specific objects while over-
looking others [19]. In the scope of VAD, some
researchers [20] have demonstrated that concentrating
attention on the foreground, especially when dynamic
objects are in motion, while ignoring the static back-
ground improves performance. Additionally, the use of a
combination of loss functions in VAD models enhances
model performance when detecting both spatial and tem-
poral anomalies in video data. Various loss functions
highlight the diverse aspects of prediction errors, improve
model robustness, and allow for tailored solutions to
complex detection tasks [21, 22].

To address the limitations described above, we pro-
pose an attention network with optional activation
(AONet) that employs an autoencoder (AE) structure for
efficient anomaly detection and combines the advantages
of several robust AFs within its architecture for effective
feature extraction. The adjustable ability of the optional
AF (OptAF) in the proposed model architecture, which
combines the benefits of the ReLU [23], leaky ReLU [24],
and sigmoid [25] AFs, enables the proposed model to

learn the critical features of complex datasets utilizing
parameterized adaptation. AONet seeks to harness spatial
and temporal characteristics in an integrated manner.
The features derived from a pre-trained CNN are directed
into two branches to capture spatial patterns and move-
ment attributes. Subsequently, these spatiotemporal attri-
butes are fed into a decoder for future frame prediction.
The decoder in the proposed model has a bottom-up
channel attention module that enables it to leverage the
interrelations between feature channels effectively. These
design choices and novel components enable the pro-
posed method to detect anomalies with high accuracy
and speed. The major contributions of this study can be
summarized as follows.

• An unsupervised learning method is employed by
leveraging the future frame prediction approach, elimi-
nating the need for labor-intensive annotation.

• We propose a novel OptAF that benefits from the
advantages of existing robust AFs (ReLU, leaky ReLU,
and sigmoid), allowing the proposed model to learn
diverse deep features of complex datasets.

• The combination of several robust loss functions
enables the proposed model to consider various aspects
of prediction error for enhanced training.

• Experimental results demonstrate that the proposed
method provides superior or competitive performance
in terms of both accuracy and speed compared with
existing state-of-the-art (SOTA) models.

The remainder of this paper is organized as follows.
Section 2 discusses existing approaches to VAD and
identifies disadvantages. A thorough explanation of the
proposed model is provided in Section 3. Extensive exper-
iments and their results are presented in Section 4.
Section 5 presents the results of ablation studies. The
implications of our findings are discussed in Section 6.
Finally, Section 7 concludes this paper and outlines
future research directions.

2 | RELATED WORK

Various approaches for VAD have been proposed over
the past few years. These approaches can be roughly clas-
sified into two primary categories: reconstruction-based
and prediction-based approaches.

2.1 | Reconstruction-based approach

In this approach, a model is taught to recreate inputs,
and the AE architecture has emerged as the most
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favorable model. This architecture consists of an encoder
and decoder, where the encoder condenses inputs into a
more compact form and the decoder reconstructs outputs
from the condensed inputs, maintaining as much similar-
ity as possible with the original inputs. Subsequently,
normal and anomalous events are distinguished using
reconstruction error, considering that normal events typi-
cally result in smaller errors than anomalous events.

Wei et al. [26] and Nawaratne et al. [27] indepen-
dently developed models that extract both appearance
and motion features from video inputs to learn normal
events using an AE architecture. Their architectures
employ stacked CNN and LSTM layers to capture spatial
and temporal representations, respectively. However, the
stacked convolutional LSTM layers in the model result in
significant complexity.

Li et al. [9] proposed a model consisting of two
streams to capture the spatial and temporal features of
inputs. The inputs consist of 3D video cuboids con-
structed by combining multiple patches extracted from
corresponding locations across consecutive frames. How-
ever, considering the computational complexity of optical
flow, this method is resource intensive. Fang et al. [28]
proposed a model consisting of multiple encoders and a
solitary decoder to encode movement and appearance
information. This model integrates a temporal encoder
with two spatial encoders. The results of these encoders
are combined and reconstructed using a single decoder.
However, this model is impractical for efficient VAD
because it employs several encoders for feature extrac-
tion. Hao et al. [29] proposed a method that uses a 3D
CNN-based discriminator and 3D–2D U-shape structure
to highlight disturbances in anomalous data, extract
high-level spatiotemporal features, and enlarge the score
gaps between normal and anomalous content to improve
anomaly detection. However, this model struggles with
real-time anomaly detection as a result of intensive
resource requirements.

Abati and others [30] and Gong and others [31] inde-
pendently employed deep AE models for image recon-
struction. The former presented a probabilistic model
that employs an autoregressive method to obtain density
information. The latter proposed an AE equipped with a
memory component, whose contents are learned by
training with normal samples. However, the reconstruc-
tion of anomalous events using such a memory module
can cause large errors during the testing phase. Li and
others [8,32] introduced a multilayer reconstruction AE
model and motion reconstruction loss to detect video
anomalies. The main disadvantage of the mentioned
models is their high computational costs.

Some scholars [11, 33] have employed the sparse cod-
ing technique to identify anomalies using a learned event

dictionary to reconstruct normal or anomalous events.
Normal events result in small reconstruction errors,
whereas anomalous events result in large reconstruction
errors. However, these models require significant com-
putational time because they used stacked RNN and
LSTM layers.

2.2 | Prediction-based approach

Prediction-based models employ several preceding
frames to predict whether a subsequent frame will be
normal or anomalous, operating under the fundamental
assumption that while normal events are predictable,
anomalous events are not. Frame prediction models typi-
cally leverage both appearance and motion data from the
provided video because inputs consist of several sequen-
tial frames that encompass motion features.

Li and others [15] first introduced the concept of
future video frame prediction. Zhou and others [20] pro-
posed an identical technique for predicting future frames.
Imbalance between the background and foreground,
which is common in VAD datasets, was addressed using
attention-driven loss. Similarly, Li and others [34]
employed a U-Net to predict future frames, and convolu-
tional LSTM layers were incorporated between U-Net
layers to extract temporal features. Lu and others [10]
combined a variational AE and convolutional LSTM for
future frame prediction to obtain temporal information
from the frames of input videos. Li and others [32] pro-
posed a method that incorporates convolutional LSTM,
masked convolution, and attention modules to address
the VAD problem using a future frame prediction tech-
nique. However, these models have high computational
costs and require long training times. Chang and others
[35] proposed an AE architecture that dissociates spatio-
temporal representations and uses an efficient motion
AE with a variance attention module and early fusion
strategy to learn regularity in spatial and motion feature
spaces. However, their method suffers from low accuracy
on challenging datasets.

2.3 | Combined methods

Some researchers have combined the two approaches
described above. For example, Tang and others [36]
integrated a reconstruction approach with future frame
prediction to exploit the advantages of both approaches.
Specifically, two U-Net models were used to identify
and reconstruct future frames. Chang and others [35]
implemented a method that eliminates computationally
intensive optical flow calculations. The first stream uses
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an AE to encode spatial data, whereas the second
stream uses a motion AE to predict the RGB differences
between initial and final frames. Morais and others [37]
proposed a VAD model that adopts dynamic skeleton
features. This model separates skeletal motion into
overall body motion and specific body positions. The
decomposed features are then passed through two RNN
branches to reconstruct initial inputs and predict future
frames. However, these models are inefficient despite
eliminating the need for optical flow computations to
capture temporal information.

3 | PROPOSED METHODOLOGY

In this section, we describe the proposed AONet model.
Figure 1 presents a comprehensive visual representation
of the proposed model. Specifically, AONet contains
three crucial modules: an encoder, spatiotemporal mod-
ule, and decoder.

As shown in Figure 1, a sequence of frames is fed
into the pre-trained CNN for feature extraction. The
extracted graphical features are then passed through
the spatiotemporal module to obtain the content and
movement details within the frames. The outputs of
the spatial and temporal branches are then summed
before being fed into the decoder, which employs a
bottom-up attention module to facilitate the more
effective use of the interrelation between feature chan-
nels. Notably, OptAF, which combines the advantages
of the leaky ReLU, ReLU, and sigmoid functions, is
employed to learn the critical patterns of complex
VAD datasets such as ShanghaiTech [38]. A more
detailed description of OptAF is presented in
Section 3.4. Furthermore, an objective function com-
bining several robust loss functions supervises the
model by considering various prediction error

characteristics. A detailed description of the objective
function is presented in Section 3.5.

3.1 | Encoder and decoder

The model input, which is a sequence of frames, is passed
through the encoder to extract visual features from the
frames. WiderResNet38 [39] is used as the encoder in
the proposed model because of its effectiveness compared
with other deep CNNs. Instead of simply increasing
depth, WiderResNet38 introduces a shallower and wider
ResNet architecture with more filters per layer. The out-
put of the final feature extraction layer of WiderResNet38
is inputted into the subsequent spatiotemporal module of
the proposed model, while two other sets of high-level
features from the intermediate layers of the encoder are
used as skip connections to the corresponding decoder
components.

Next, the final output of the encoder is fed into the
spatiotemporal module to exploit the content and move-
ment details within the frames. The results from both
branches are combined by adding them element-wise
prior to feeding them into the decoder to reconstruct
future frames. The decoder consists of multiple layers,
each including deconvolution, batch normalization, and
OptAF, which enable the model to learn diverse features
effectively. Additionally, an attention module is applied
after each of the aforementioned layers to capture the
channel interdependence of the features. Furthermore,
the output features from the attention module are inte-
grated with similar intermediate features obtained by the
deep CNN in the encoder, which possesses an identical
spatial resolution, ensuring that multiscale contextual
information is preserved. Subsequently, the integrated
features undergo deconvolution to increase their resolu-
tion to match that of the input frames. By selecting effec-
tive components such as WiderResNet38, employing
innovative AFs, and integrating attention mechanisms,
this model aims to advance the state of anomaly detec-
tion in video surveillance through precise and context-
aware frame prediction and reconstruction.

3.2 | Spatiotemporal module

In this study, we used the temporal shift module (TSM)
introduced by Lin and others [40] to obtain temporal
information from videos. Unlike the 3D convolutional
operation [41], which is computationally intensive, the
temporal shift operation efficiently exploits temporal
information in the input frames of a VAD dataset. Specif-
ically, TSM moves the feature map along the temporal

F I GURE 1 Overall architecture of the proposed AONet

model.
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dimension for efficient temporal modeling. Only a por-
tion of the channels transition to the subsequent frame,
leaving the remainder intact. Subsequently, the features
of the current frame are merged with the features of the
previous frame. Given input feature maps Ft with dimen-
sions ℝN�T�C�H�W , where N ,T,C,H, and W denote the
number of input samples, temporal dimensions, chan-
nels, height, and width, respectively, the output features
are calculated as follows:

F 0
t ¼TSðFtÞ, ð1Þ

where TS denotes a temporal shift operation. A graphical
illustration of the temporal shift operation is presented in
Figure 2.

As shown in Figure 2, the input features contain four
frames T¼ft1, t2, t3, t4g. After TSM is implemented, a
segment of the channels from frame t2 is replaced with a
portion of a channel from frame t1.

The spatial module of the proposed model accumu-
lates the features extracted from deep CNNs across
frames. To reduce computational complexity, 1�1 con-
volution is applied to the aggregated features to reduce
the channel count, given that the accumulated features
include a substantial number of channels. The
features from the temporal and spatial branches are com-
bined as follows:

F ¼FtoþFso, ð2Þ

where Fto and Fso represent temporal and spatial branch
outputs, respectively.

3.3 | Attention module

Channel attention has been widely used in various fields
to exploit the interdependence among feature channels

[42, 43]. In the proposed model, the output of each
deconvolutional block in the decoder is passed through
an attention module. A graphical representation of the
attention module is presented in Figure 3.

The input for the attention module, which is also the
output of the deconvolutional block, is F �ℝC�H�W .
First, a global average pooling (GAP) operation is applied
to the feature map F to obtain the interrelation among
channels. Next, 1�1 convolution is used to reduce the
dimensions, followed by OptAF implementation and
another 1�1 convolution that restores the channel
dimensions. Therefore, channel attention can be calcu-
lated as follows:

AðFÞ¼ σðW 2OptAFðW 1GAPðFÞÞ, ð3Þ

where σ and AðFÞ denote the sigmoid AF and channel
attention, respectively. Therefore, the overall output of
the attention module is obtained as follows:

F 0 ¼F�AðFÞ, ð4Þ

where � denotes the element-wise multiplication opera-
tion. Notably, for large and complex VAD datasets such
as ShanghaiTech Campus and CUHK Avenue, the chan-
nel attention module is slightly modified to improve com-
prehension. Specifically, the input F is passed through a
different convolutional block before being fed into the
channel attention module described above. The convolu-
tional block contains two 3�3 convolutional operations
with OptAF implementation between them. Mathemati-
cally, this process is expressed as follows:

AmodðFÞ¼ConvðFÞ�AðConvðFÞÞ, ð5Þ

where Amod and ConvðFÞ denote the modified channel
attention and convolutional blocks, respectively. Addi-
tionally, a residual connection is implemented to obtain
the final output of the modified channel attention as
follows:

F I GURE 2 Graphical illustration of the temporal shift

operation applied to feature map F to obtain output feature F 0.
Columns with corresponding colors represent features of different

frames. One can see that the temporal shift operation is applied to a

specific area in frame t1. As a result, that area is shifted to the next

frame t2. F I GURE 3 Graphical representation of the attention module.
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F 0 ¼F ⊕ AmodðFÞ, ð6Þ

where ⊕ denotes element-wise addition.

3.4 | Optional AF

Learning even the smallest patterns in input frames is
crucial for accurately detecting anomalous events consid-
ering their rare nature. The AF plays a significant role in
the training dynamics and final performance of the
model. Existing widely used AFs have disadvantages such
as dead neurons or non-smooth transitions around zero.
To address these issues, the proposed model leverages
three well-known AFs (ReLU, leaky ReLU, and sigmoid)
by combining the strengths of each function. Specifically,
the positive region replicates the functionality of ReLU
and can be expressed as follows:

Positive¼ReLUðxÞ: ð7Þ

ReLU provides impressive training speed but ignores
negative values. In VAD, where every part of the input
frame is equally important, all values must be considered.
Therefore, OptAF also considers negative values. The nega-
tive region imitates the behavior of leaky ReLU as follows:

Negative¼ αðx�ReLUðxÞÞ, ð8Þ

where α denotes a trainable parameter that controls the
negative slope and varies across different datasets. Addi-
tionally, in the transition region, where the values are
approximately zero, an enhanced sigmoid AF is
employed for smoothing as follows:

Transition¼ βðx�ReLUð�βxÞÞσðxÞÞ, ð9Þ

where β corresponds to another trainable value that con-
trols the smoothing around zero and σ denotes the sig-
moid AF. The proposed OptAF algorithm is defined as
follows:

OptAFðxÞ¼ positiveþnegativeþ transition: ð10Þ

OptAF mitigates the disadvantages of each AF and
benefits from their advantages through a comprehensive
unification strategy. Additionally, the trainable parame-
ters α and β allow for adaptation to any type of VAD
dataset. A visualization of all the aforementioned AFs is
presented in Figure 4.

As shown in Figure 4, OptAF incorporates all the
benefits of these popular AFs while mitigating their
disadvantages.

3.5 | Loss function

The proposed model uses combined constraints on pixel
intensity, potential blur, image quality at various resolu-
tions, and gradients. The proposed model predicts the
subsequent F̂tþ1 frame given the input frames
F1, F2, …, Ftf g and compares F̂tþ1 with the actual frame
Ft . In general, the constraints related to pixel intensity and
its gradient in the frames play a crucial role in reducing
prediction error. Therefore, the proposed model employs
intensity loss to ensure the similarity of pixels as follows:

LintðF, bFÞ¼ F� F̂
�� ��2

2: ð11Þ

The gradient constraint is incorporated to address
possible blurriness, thereby achieving a more visually
pleasing video frame. The proposed model employs a loss
function that computes the discrepancy between the
absolute gradients across two spatial dimensions as
follows:

LgradðF, bFÞ¼
X

k, l

jF̂k,l� F̂k�1,lj� jFk,l�Fk�1,lj
�� ��

1

þ jF̂k,l� F̂k,l�1j� jFk,l�Fk,l�1j
�� ��

1,
ð12Þ

where k and l denote the two spatial dimensions.
Additionally, the proposed model measures structural sim-
ilarity using multiscale structural similarity (MS-SSIM). To
ensure that large deviations in pixel values between the
predicted and actual frames are minimized, the proposed
model employs root mean squared (RMS) loss as follows:

RMSðF, bFÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F� F̂

�� ��2
2þ ε

q
: ð13Þ

F I GURE 4 Graphical illustration of (A) OptAF, (B) ReLU,

(C) leaky ReLU, and (D) sigmoid.
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Consequently, the combined objective function for
the proposed model, which includes the intensity, gradi-
ent, MS-SSIM, and RMS loss functions, is expressed as
follows:

LðF, bFÞ¼ αLintðF, F̂ÞþβLgradðF, F̂Þ
þγLmsssimðF, bFÞþ λRMSðF, F̂Þ,

ð14Þ

where α, β, γ, and λ are scalar values that balance the
weights of the loss functions.

3.6 | Anomaly detection

Anomalies were detected using the anomaly score ASðtÞ.
The peak signal-to-noise ratio (PSNR) was employed to
assess the quality of predicted frames because it is a
widely used metric in this context. The PSNR of a pre-
dicted frame is calculated as follows:

PSNRðF, bFÞ¼ 10 log10
½max F̂ �2

1
N

PN
k¼1ðFk� F̂kÞ2

, ð15Þ

where N and ½max F̂ � denote the number of pixels and
maximum value of F̂, respectively. A higher PSNR sug-
gests a higher likelihood of the frame being normal. After
computing the PSNR for each frame in each test video,
the proposed model follows the methodology described
in [15] to normalize the PSNR values. Subsequently, the
ASðtÞ for each frame is calculated as follows:

ASðtÞ¼ PSNRt�minðPSNRÞ
maxðPSNRÞ�minðPSNRÞ , ð16Þ

where minðPSNRÞ and maxðPSNRÞ denote the lowest
and highest PSNR values, respectively. Therefore, anoma-
lous frames can be predicted based on ASðtÞ.

4 | EXPERIMENTS AND RESULTS

4.1 | Dataset description

To evaluate the performance of the proposed model,
three benchmark datasets were selected, namely, the
UCSD [44], CUHK Avenue [45], and ShanghaiTech Cam-
pus [38] datasets. The training sets of all datasets
included only normal samples, whereas the testing sets
contained both normal and anomalous samples.

4.1.1 | UCSD

This dataset is divided into two subsets (Ped1 and Ped2),
each of which were captured at distinct outdoor loca-
tions. Ped1 has resolution of 158�238, and Ped2 has a
resolution of 240�360. Typical recorded activities
involve pedestrians walking through a camera’s field of
view, which are used during the training phase. The pres-
ence of cars, bikers, skaters, and wheelchairs is consid-
ered anomalous. Following the methodologies described
in [46, 47], Ped1 was omitted from our experiments
owing to its low resolution. The Ped2 dataset consists of
16 videos (2550 frames) for training and 12 videos (2010
frames) for testing.

4.1.2 | CUHK Avenue

This dataset consists of 16 training videos (15 328 frames)
and 21 testing videos (15 324 frames). The resolution of
the video frames is 360�640 pixels. There are
47 instances of anomalous events in the dataset, includ-
ing object tossing, lingering, and rapid movements.

4.1.3 | ShanghaiTech Campus

This dataset is one of the most demanding datasets in
VAD, containing 130 anomalous events. It consists of
330 training videos (274 515 frames) and 107 testing
videos (42 883 frames) captured across 13 different
scenes, each subject to different lighting environments
and camera positions. The resolution of the video frames
is 480�856 pixels.

4.2 | Training details

The proposed model was implemented using Python
version 3.8 and Pytorch version 11.7. Experiments were
conducted on a 32 GB NVIDIA Tesla V100-DGXS GPU
using CUDA 11.4. We resized the video frames of
Ped2, CUHK Avenue, and ShanghaiTech Campus to
224�288, 192�320, and 192�288 pixels, respectively.
Prior to being fed into the model, the intensity of every
frame was adjusted to fall within a range of 1 to 1. The
initial learning rate was established as 2e4. The Adam opti-
mizer was used to train the network. To control computa-
tional complexity, a pre-classified feature map was used
instead of the final map extracted by WiderResNet38 dur-
ing training on the CUHK Avenue and ShanghaiTech
Campus datasets.
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4.3 | Evaluation metric

In line with previous studies [15, 20], the performance of
the proposed model was evaluated using the frame-level
area under the curve (AUC). AUC was determined by
calculating the area under the receiver operating charac-
teristic curve, which varies based on different threshold
values for anomaly scores. The AUC ranges from zero to
one and superior anomaly detection performance is
reflected by a higher AUC.

4.4 | Baseline models

We selected recent SOTA VAD models for comparison
with the proposed model. These models can be divided
into three categories, as discussed in Section 2:
reconstruction-based models [8, 26–31, 33], prediction-
based models [10, 15, 20, 35, 48], and combined models
[36, 37].

4.5 | Experimental results on the UCSD
Ped2 dataset

First, we conducted experiments using UCSD Ped2.
Table 1 presents a performance comparison of the pro-
posed model with SOTA VAD models on UCSD Ped2.

As indicated in Table 1, the proposed model achieved
the highest accuracy. In particular, our model
achieved an AUC of 97.0%, whereas the second-best
model, which belonged to the reconstruction-based cate-
gory [29], achieved an AUC of 96.9%. The highest AUCs
among the combined [37] and prediction-based [35]
models were 96.3% and 96.7%, respectively, which were
0.7% and 0.3% lower than that of the proposed model,
respectively. Overall, the prediction-based models dem-
onstrated more competitive results than the other two
categories on this dataset, which can be considered as
evidence of their effectiveness for VAD tasks.

4.6 | Experimental results on the CUHK
Avenue dataset

The following experiments were performed using CUHK
Avenue. Table 2 presents performance comparisons of
our model with SOTA VAD models on the CUHK Ave-
nue dataset.

As shown in Table 2, the proposed model achieved
competitive performance with an AUC of 86.9%, whereas
the highest AUC (87.1%) was achieved by the prediction-
based model [35]. Regarding reconstruction-based
models, our model outperformed the best-performing
model proposed by Hao and others [29], which achieved
an AUC of 86.6%, by 0.3%. Among the combined models,

TAB L E 1 Performance comparison on UCSD Ped2 in terms of

AUC (%).

Model AUC (%)

Reconstruction based Abati et al. [30] 95.4

Fang et al. [28] 95.6

Gong et al. [31] 94.1

Li and Chang [8] 91.6

Luo et al. [33] 92.2

Nawaratne et al. [27] 91.1

Wei et al. [26] 89.5

Hao et al. [29] 96.9

Prediction based Liu et al. [15] 95.4

Lu et al. [10] 96.0

Yang et al. [48] 95.9

Zhou et al. [20] 96.0

Chang et al. [35] 96.7

Combined Morais et al. [37] 96.3

Tang et al. [36] -

Ours 97.0

TABL E 2 Performance comparison on CUHK Avenue in

terms of AUC (%).

Model AUC (%)

Reconstruction based Abati et al. [30] -

Fang et al. [28] 86.3

Gong et al. [31] 83.3

Li and Chang [8] 84.2

Luo et al. [33] 83.5

Nawaratne et al. [27] 76.8

Wei et al. [26] 79.7

Hao et al. [29] 86.6

Prediction based Liu et al. [15] 85.1

Lu et al. [10] 85.7

Yang et al. [48] 85.9

Zhou et al. [20] 86.0

Chang et al. [35] 87.1

Combined Morais et al. [37] 86.3

Tang et al. [36] 85.1

Ours 86.9
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the model proposed by Morais and others [37] achieved
the best AUC of 86.3%, which was 0.6 % lower than that
of our model. In summary, the prediction-based category
was more effective than the other two categories consid-
ering its higher overall results on the CUHK Avenue
dataset.

4.7 | Experimental results on the
ShanghaiTech Campus dataset

To verify the effectiveness of the proposed model on a
large-scale challenging dataset, we conducted experiments
on the ShanghaiTech Campus dataset. Table 3 presents
performance comparisons of the proposed model with
SOTA VAD models on the ShanghaiTech Campus dataset.

As shown in Table 3, the proposed model and the
reconstruction-based model [29] achieved the highest
accuracy with an AUC of 73.8%, whereas the second-best
model proposed by Chang and others [35] achieved an
AUC of 73.7%. Notably, this runner-up model is prediction
based. The model proposed by Morais and others [37]
achieved the highest AUC (73.4%) among the combined
models, with a value 0.4% lower than that of our model.

4.8 | Speed comparison

We conducted experiments to compare the speed and
AUC of the proposed method with two baseline SOTA

methods [15, 35] on the UCSD Ped2 dataset. Table 4 pre-
sents the results of the speed and AUC comparisons.

As shown in Table 4, when using the same GPU iden-
tified in Section 4.2, the proposed method detected anom-
alies in video frames at a speed of 29 FPS, matching or
exceeding the performance of its SOTA counterparts. In
particular, the methods from [15] and [35] achieved FPS
values of 25 and 32, respectively. Additionally, the pro-
posed method achieved an AUC of 97.0%, outperforming
the other methods.

5 | ABLATION STUDY

5.1 | Performance comparison between
OptAF and ReLU

To demonstrate the effectiveness of the OptAF used in
the proposed model, we conducted experiments to com-
pare its performance with that of the widely used ReLU
AF. Table 5 presents performance comparisons between
OptAF and ReLU in the proposed framework for all three
datasets.

As shown in Table 5, OptAF outperformed ReLU on
all datasets in terms of AUC. In particular, OptAF out-
performed ReLU by 0.7% with an AUC of 97.0% on the
UCSD Ped2 dataset. On the CUHK Avenue dataset,
the AUC of ReLU was 86.1%, whereas that of OptAF was
86.9%, representing a 0.8% improvement. Similarly, the
results for the most challenging dataset, ShanghaiTech
Campus, proved the effectiveness of OptAF. ReLU
yielded an AUC of 73.1%, whereas OptAF yielded an
AUC of 73.8%. In summary, OptAF was more effective
than ReLU at capturing critical patterns in large-scale
challenging VAD datasets, as demonstrated by its supe-
rior results in these experiments.

TAB L E 3 Performance comparison on ShanghaiTech Campus

in terms of AUC (%).

Model AUC (%)

Reconstruction based Abati et al. [30] 72.5

Fang et al. [28] 73.2

Gong et al. [31] 71.2

Li and Chang [8] -

Luo et al. [33] 69.6

Nawaratne et al. [27] -

Wei et al. [26] 67.2

Hao et al. [29] 73.8

Prediction based Liu et al. [15] 72.8

Lu et al. [10] -

Yang et al. [48] 73.5

Zhou et al. [20] -

Chang et al. [35] 73.7

Combined Morais et al. [37] 73.4

Tang et al. [36] 73.0

Ours 73.8

TABL E 4 Speed and AUC comparisons on the UCSD Ped2

dataset.

Model AUC (%) FPS

Liu et al. 95.4 25

Chang et al. 96.7 32

Ours 97.0 29

TABL E 5 Performance comparison between OptAF and

ReLU.

Activation
function

AUC (%) on
UCSD Ped2

AUC (%)
on CUHK
Avenue

AUC (%) on
ShanghaiTech
Campus

ReLU 96.3 86.1 73.1

OptAF 97.0 86.9 73.8
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5.2 | Effectiveness of the combined loss
function

Generally, the primary role of a loss function is to train a
model by highlighting the different dimensions of predic-
tion error. In many cases, the use of a combination of loss
functions while training a model to optimize weight
parameters can be beneficial. Typically, the use of a sin-
gle loss function does not provide optimal results. Each
loss function quantifies the model’s performance from a
unique perspective. Therefore, employing various robust
loss functions contributes to determining optimal param-
eters. To verify the contribution of each loss function to
the performance of the proposed model, we conducted
experiments on the UCSD Ped2 dataset. Table 6 summa-
rizes the effects of each loss function on the objective
function of the proposed model.

As shown in Table 6, including all loss functions con-
sidered in the final objective function improves the per-
formance of the proposed model. When using only Lint,
the model achieved an AUC of 95.2%. When Lgrad was
added, the AUC increased to 95.9%, representing a 0.7%
improvement. Similarly, including Lmsssim on addition to
the previous two loss functions increased the AUC
to 96.4%, representing an improvement of 0.5%. Finally,
incorporating RMS into the final objective function in
addition to the three aforementioned loss functions

yielded the highest AUC of 97.0%, representing a 0.6%
improvement. In summary, combining various robust
loss functions in the final objective function enables the
effective training of the proposed model by addressing
different important aspects of prediction error.

5.3 | Performance comparison of pre-
trained CNNs

To verify the effectiveness of the proposed model, we
conducted an ablation study comparing its performance
with that of various deep CNNs, where only the pre-
trained CNN was changed in the network architecture.
The results of this ablation study are presented in
Table 7.

As shown in Table 7, the proposed method using
WiderResNet38 as the pre-trained CNN achieved the best
results on the ShanghaiTech Campus, CUHK Avenue,
and UCSD Ped2 datasets with AUCs of 73.8.

5.4 | Performance comparison of the
components of the proposed method

We conducted an ablation study to assess the perfor-
mance of the three modules in the proposed method,
namely, the spatial, temporal, and attention modules.
Table 8 presents performance evaluations of the proposed
method using various combinations of these modules.

As shown in Table 8, performance improved with the
addition of the other two modules compared with using
the spatial module alone. In particular, the temporal
module significantly improved performance. The pro-
posed method achieved the best results with all three
modules, achieving AUCs of 97.0%, 86.9%, and 73.8% on

TAB L E 6 Impact of loss functions.

Loss function AUC (%) on UCSD Ped2

Lint 95.2

LintþLgrad 95.9 (+0.7)

LintþLgradþLmsssim 96.4 (+0.5)

LintþLgradþLmsssimþRMS 97.0 (+0.6)

TAB L E 7 Performance evaluation of pre-trained CNNs in the proposed method in terms of AUC (%).

Method Pre-trained CNN UCSD Ped2 CUHK Avenue ShanghaiTech Campus

Proposed method ResNet101 [49] 95.4 82.4 72.9

SE-ResNext101 [50] 96.3 84.5 73.2

WiderResNet38 [39] 97.0 86.9 73.8

TAB L E 8 Performance evaluation of processing modules of the proposed method in terms of AUC (%).

Pre-trained CNN Spatial Temporal Attention UCSD Ped2 CUHK Avenue ShanghaiTech Campus

WiderResNet38 Yes No No 96.8 84.8 71.8

Yes Yes No 96.2 85.5 72.7

Yes No Yes 96.5 85.9 72.6

Yes Yes Yes 97.0 86.9 73.8
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the UCSD Ped2, CUHK Avenue, and ShanghaiTech
Campus datasets, respectively.

6 | DISCUSSION

6.1 | Visualization results

Visualizations of the anomaly scores for the test video
frames in the UCSD Ped2, CUHK Avenue, and Shanghai-
Tech Campus datasets are presented in the figures. Spe-
cifically, Figure 5 presents the frame-wise anomaly scores
for the second video in the UCSD Ped2 test dataset.

As illustrated in Figure 5, the anomaly score rapidly
increases when the anomalous event occurs but remains

low in the absence of such events. Similarly, Figure 6 pre-
sents the frame-wise anomaly scores for the second test
video from the CUHK Avenue dataset.

As shown in Figure 6, the first two anomalous
events (running people) cause the anomaly score to
increase. However, a third increase in the anomaly
score was triggered by camera disturbances. Figure 7
presents a visualization of the anomaly scores for the
frames in the second test video from the ShanghaiTech
Campus dataset.

As shown in Figure 7, the anomaly score increases
significantly when a person riding a bicycle appears in
the frames, demonstrating that the proposed method can
effectively distinguish anomalous frames from normal
frames.

6.2 | Limitations of the proposed method

After evaluating the performance of the proposed
method on the three benchmark datasets, we identified
several limitations. First, there are considerable perfor-
mance differences between datasets, particularly between
UCSD Ped2 and ShanghaiTech Campus. This discrep-
ancy may have occurred because the ShanghaiTech Cam-
pus dataset is more challenging with 130 anomalous
events and 13 diverse scenes, each featuring different
lighting conditions and camera angles. Second, the pro-
posed method is not sufficiently robust to common issues
in video data such as camera shaking. As shown in
Section 6.1, the proposed method incorrectly identified
camera disturbances as anomalous events. Third, the
anomaly detection speed of the proposed method can be
further enhanced through more efficient design choices.

7 | CONCLUSION AND
FUTURE WORKS

In this paper, we proposed an attention-based residual AE
architecture using a novel OptAF for VAD. The proposed
method detects anomalous events in an unsupervised
manner by utilizing appearance and motion information
from spatial and temporal modules, respectively. Temporal
feature extraction was implemented using TSM. To
enhance learning effectiveness, the proposed method
incorporates attention modules and OptAF, which com-
bines the advantages of ReLU, leaky ReLU, and sigmoid.
Additionally, the combined loss function employed in the
proposed method contributes to its superior performance.
Extensive experimental results demonstrated that the pro-
posed method outperformed baseline models on three
benchmark VAD datasets. Ablation studies revealed that

F I GURE 5 Visualization of frame-wise anomaly scores. The

blue line represents the calculated anomaly scores, pink area

indicates the actual occurrence of anomalous events, and red

bounding box highlights the anomalous action object (a person

riding a bicycle).

F I GURE 6 Visualization of frame-wise anomaly scores. The

blue line represents the calculated anomaly scores, pink area

indicates the actual occurrence of anomalous events, and red

bounding box highlights the anomalous action object (a running

person).

F I GURE 7 Visualization of frame-wise anomaly scores. The

blue line represents the anomaly scores, pink area indicates the

actual occurrence of anomalous events, and red bounding box

highlights the anomalous action object (a person riding a bicycle).
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the proposed OptAF-based model outperformed a model
based on ReLU in terms of AUC. Additionally, the com-
bined loss function improved performance, and the spatio-
temporal and attention modules contributed to the
performance boost of the proposed method. Furthermore,
the proposed method demonstrated potential for real-
world applications owing to its competitive speed. In the
future, we plan to optimize the performance and efficiency
of the proposed method further and apply it to real-world
scenarios.
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