Acknowledgement
This work was supported by the Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korea government (24ZS1230, memory-computation convergence neuromorphic computing technology).
References
- A. Basu, L. Deng, C. Frenkel, and X. Zhang, Spiking neural network integrated circuits: a review of trends and future directions (IEEE Custom Integr. Circuits Conf., Newport Beach, CA, USA), 2022, pp. 1-8.
- Y. Kuang, X. Cui, Y. Zhong, K. Liu, C. Zou, Z. Dai, Y. Wang, D. Yu, and R. Huang, A 64k-neuron 64m-1b-synapse 2.64 pj/- sop neuromorphic chip with all memory on chip for spike-based models in 65nm CMOS, IEEE Trans. Circuits Syst. II: Express Briefs 68 (2021), no. 7, 2655-2659.
- D. V. Christensen, R. Dittmann, B. Linares-Barranco, A. Sebastian, M. Le Gallo, A. Redaelli, S. Slesazeck, T. Mikolajick, S. Spiga, S. Menzel, and I. Valov, 2022 roadmap on neuromorphic computing and engineering, Neuromorphic Comput. Eng. 2 (2022), no. 2, 022501.
- A. R. Young, M. E. Dean, J. S. Plank, and G. S. Rose, A review of spiking neuromorphic hardware communication systems, IEEE Access 7 (2019), 135606-135620.
- S. M. Nowick and M. Singh, Asynchronous design part 1: overview and recent advances, IEEE Des. Test 32 (2015), no. 3, 5-18.
- H. K. O. Berge and P. Hafliger, High-speed serial AER on FPGA (IEEE Int. Symp. Circuits Syst., New Orleans, LA, USA), 2007, pp. 857-860.
- A. Lines, P. Joshi, R. Liu, S. McCoy, J. Tse, Y.-H. Weng, and M. Davies, Loihi asynchronous neuromorphic research chip, Energy 10 (2018), 15.
- M. Mahowald, Vlsi analogs of neuronal visual processing: a synthesis of form and function, Ph.D. Thesis, California Institute of Technology, 1992.
- X.-G. Guan, X.-Y. Tong, and Y.-T. Yang, Quasi delay-insensitive high speed two-phase protocol asynchronous wrapper for network on chips, J. Comput. Sci. Technol. 25 (2010), no. 5, 1092-1100.
- J. Spars and S. Furber, Principles asynchronous circuit design, Springer, 2002.
- C. Ding, Y. Huan, H. Jia, Y. Yan, F. Yang, L. Liu, M. Shen, Z. Zou, and L. Zheng, A hybrid-mode on-chip router for the largescale FPGA-based neuromorphic platform, IEEE Trans. Circuits Syst. I: Regular Papers 69 (2022), no. 5, 1990-2001.
- P. J. Zhou, Q. Yu, M. Chen, G. C. Qiao, Y. Zuo, Z. Zhang, Y. Liu, and S. G. Hu, Fullerene-inspired efficient neuromorphic network-on-chip scheme, IEEE Trans. Circuits Syst. II: Express Briefs 2023 (2023), 1376-1380.
- B. Lin, L. Wang, Z. Yang, J. Tie, G. Zhou, and X. Yu, A configurable inter-chip connection architecture for multicore neuromorphic chip (4th Int. Conf. Frontiers Technol. Inform. Comput., Qingdao, China), 2022, pp. 928-931.
- M. Sadeghi, Y. Rezaeiyan, D. F. Khatiboun, and F. Moradi, Hardware implementation of a resource-efficient router for multi-core spiking neural networks (IEEE Int. Symp. Circuits Syst., Monterey, CA, USA), 2023, pp. 1-5.
- S. Ouyang, K. Zhou, H. Jiang, C. Li, J. Liang, F. Zhu, X. Zhang, and Q. Liu, A scalable area-efficient low-delay asynchronous AER circuits design for neuromorphic chips, IEEE Trans. Circuits Syst. II: Express Briefs 2024 (2024), 2804-2808.
- A. M. Lines Pipelined asynchronous circuits, Master's Thesis, California institute of Technology, 1998.
- A. J. Martin, The limitations to delay-insensitivity in asynchronous circuits, Beauty is our business: a birthday salute to Edsger W. Dijkstra, Springer, 1990, pp. 302-311.
- Y. Thonnart, E. Beigne, and P. Vivet, A pseudo-synchronous implementation flow for WCHB QDI asynchronous circuits (IEEE 18th Int. Symp. Asynchronous Circuits Syst., Kgs. Lyngby, Denmark), 2012, pp. 73-80.
- C. L. Seitz, System timing, Introduct. VLSI Syst. 1980 (1980), 218-262.
- P. A. Beerel, R. O. Ozdag, and M. Ferretti, A designer's guide to asynchronous vlsi, Cambridge University Press, 2010.
- A. M. T. Linn, C. Shoushun, and Y. K. Seng, Adaptive priority toggle asynchronous tree arbiter for AER-based image sensor (IEEE/IFIP 19th Int. Conf. VLSI System-on-Chip, Hong Kong, China), 2011, pp. 66-71.
- S.-C. Liu, T. Delbruck, G. Indiveri, A. Whatley, and R. Douglas, Event-based neuromorphic systems, John Wiley & Sons, 2014.
- F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, and B. Taba, Truenorth: Design and tool flow of a 65 Mw 1 million neuron programmable neurosynaptic chip, IEEE Trans. Comput-Aided Design Integr. Circ. Syst. 34 (2015), no. 10, 1537-1557.
- P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, and B. Brezzo, A million spiking-neuron integrated circuit with a scalable communication network and interface, Science 345 (2014), no. 6197, 668-673.
- N. Qiao and G. Indiveri, A bi-directional address-event transceiver block for low-latency inter-chip communication in neuromorphic systems (IEEE Int. Symp. Circuits Syst., Florence, Italy), 2018, pp. 1-5.
- M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, and Y. Liao, LOIHI: a neuromorphic manycore processor with on-chip learning, IEEE Micro 38 (2018), no. 1, 82-99.
- P. A. Beerel, G. D. Dimou, and A. M. Lines, Proteus: an ASIC flow for Ghz asynchronous designs, IEEE Des. Test Comput. 28 (2011), no. 5, 36-51.