Acknowledgement
This study was supported by the Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean government (24ZS1230, Memory Computation Convergence Neuromorphic Computing Technology).
References
- Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521 (2015), no. 7553, 436-444, DOI 10.1038/nature14539.
- D. Wang, C. T. Lin, G. K. Chen, P. Knag, R. K. Krishnamurthy, and M. Seok, DIMC: 2219TOPS/W 2569F2/b digital in-memory computing macro in 28nm based on approximate arithmetic hardware, (IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA), 2022, pp. 266-268. DOI 10.1109/ISSCC42614.2022.9731659
- T. H. Hsu G. C. Chen, Y. R. Chen, R. S. Chen, C. C. Lo, K. T. Tang, M. F. Chang, and C. C. Hsieh, A 0.8V intelligent vision sensor with tiny convolutional neural network and programmable weights using mixed-mode processing-in-sensor technique for image classification. (IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA), 2022. DOI 10.1109/ISSCC42614.2022.9731675
- Garrett D, Park YS, Kim S, Sharma J, Huang W, Shaghaghi M, Parthasarathy V, Gibellini S, Bailey S, Moturi M, Vorenkamp P, A 1mW always-on computer vision deep learning neural decision processor, (IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA), 2023, pp. -10. DOI 10.1109/ISSCC42615.2023.10067588
- F. Conti, D. Rossi, G. Paulin et al., 22.1 A 12.4TOPS/W @ 136GOPS AI-IoT system-on-chip with 16 RISC-V, 2-to-8b precision-scalable DNN acceleration and 30%-boost adaptive body biasing, (IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA), 2023, pp. 21-23. 10.1109/ISSCC42615.2023.10067643
- C. S. Thakur, J. L. Molin, G. Cauwenberghs, G. Indiveri, K. Kumar, N. Qiao, J. Schemmel, R. Wang, E. Chicca, J. Olson Hasler, J. S. Seo, S. Yu, Y. Cao, A. Van Schaik, and R. Etienne-Cummings, Large-scale neuromorphic spiking array processors: a quest to mimic the brain, Front. Neurosci. 12 (2018), 891. DOI 10.3389/fnins.2018.00891
- K. Roy, A. Jaiswal, and P. Panda, Towards spike-based machine intelligence with neuromorphic computing, Nature 575 (2019), no. 7784, 607-617. DOI 10.1038/s41586-019-1677-2
- C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, and B. Kay, Opportunities for neuromorphic computing algorithms and applications, Nat. Comput. Sci. 2 (2022), no. 1, 10-19. DOI 10.1038/s43588-021-00184-y
- S. Kim, S. Kim, W. Jo, S. Kim, S. Hong, and H. J. Yoo, 20.5 Ctransformer: a 2.6-18.1μJ/token homogeneous DNN-transformer/spiking-transformer processor with big-little network and implicit weight generation for large language models, (IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA), 2024, pp. 368-370. DOI 10.1109/ISSCC49657.2024.10454330
- M. Yang, C. H. Chien, T. Delbruck, and S. C. Liu, A 0.5V 55μW 64×2-channel binaural silicon cochlea for event-driven stereo-audio sensing, IEEE J. Solid-State Circ. 51 (2016), no. 11, 2554-2569. DOI 10.1109/JSSC.2016.2604285
- F. C. Bauer, D. R. Muir, and G. Indiveri, Real-time ultra-low power ECG anomaly detection using an event-driven neuromorphic processor, IEEE Trans. Biomed. Circ. Syst. 13 (2019), no. 6, 1575-1582. DOI 10.1109/TBCAS.2019.2953001
- I. Kiselev, C. Gao, and S. C. Liu, Spiking cochlea with systemlevel local automatic gain control, IEEE Trans. Circ. Syst. I: Regular Papers 69 (2022), no. 5, 2156-2166. DOI 10.1109/TCSI.2022.3150165
- B. Son, Y. Suh, S. Kim et al., 4.1 A 640×480 dynamic vision sensor with a 9μm pixel and 300Meps address-event representation (IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA), 2017, pp. 66-67. DOI 10.1109/ISSCC.2017.7870263
- M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F. Guerra, P. Joshi, P. Plank, and S. R. Risbud, Advancing neuromorphic computing with Loihi: a survey of results and outlook, Proc. IEEE 109 (2021), no. 5, 911-934. DOI 10.1109/JPROC.2021.3067593
- P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, A million spiking-neuron integrated circuit with a scalable communication network and interface, Sci. 345 (2014), no. 6197, 668-673. DOI 10.1126/science.1254642
- G. K. Chen, R. Kumar, H. E. Sumbul, P. C. Knag, and R. K. Krishnamurthy, A 4096-neuron 1M-synapse 3.8-pJ/SOP spiking neural network with on-chip STDP learning and sparse weights in 10-nm FinFET CMOS, IEEE J. Solid-State Circ. 54 (2019), no. 4, 992-1002. DOI 10.1109/JSSC.2018.2884901
- S. Friedmann, J. Schemmel, A. Grubl, A. Hartel, M. Hock, and K. Meier, Demonstrating hybrid learning in a flexible neuromorphic hardware system, IEEE Trans. Biomed. Circ. Syst. 11 (2017), no. 1, 128-142. DOI 10.1109/TBCAS.2016.2579164
- S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs), IEEE Trans. Biomed. Circ. Syst. 12 (2018), no. 1, 106-122. DOI 10.1109/TBCAS.2017.2759700
- H. Cho, H. Son, K. Seong, B. Kim, H. J. Park, and J. Y. Sim, An on-chip learning neuromorphic autoencoder with currentmode transposable memory read and virtual lookup table, IEEE Trans. Biomed. Circ. Syst. 12 (2018), no. 1, 161-170. DOI 10.1109/TBCAS.2017.2762002
- J. Lazzaro and J. Wawrzynek, A multi-sender asynchronous extension to the AER protocol (Proc. Sixteenth Conf. on Adv. Res. in VLSI, Chapel Hill, NC, USA), 1995, pp. 158-169. DOI 10.1109/ARVLSI.1995.515618
- J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital integrated circuits, 2nd. ed., Prentice Hall Press, Saddle River, NJ, USA, 2003, 107-112.
- J. B. Kuo and S. C. Lin, Low-voltage SOI CMOS devices and circuits, Wiley Interscience, New York, NY, USA, 2001.
- P. U. Diehl and M. Cook, Unsupervised learning of digit recognition using spike-timing-dependent plasticity, Front. Comput. Neurosci. 9 (2015), 99. DOI 10.3389/fncom.2015.00099