
S P E C I A L I S S U E

NEST-C: A deep learning compiler framework for
heterogeneous computing systems with artificial
intelligence accelerators

Jeman Park1 | Misun Yu1 | Jinse Kwon1 | Junmo Park2 |

Jemin Lee1 | Yongin Kwon1

1Artificial Intelligence Computing
Research Laboratory, Electronics and
Telecommunications Research Institute,
Daejeon, Republic of Korea
2Samsung Electronics, Hwaseong,
Republic of Korea

Correspondence
Jemin Lee and Yongin Kwon, Artificial
Intelligence Computing Research
Laboratory, Electronics and
Telecommunications Research Institute,
Daejeon, Republic of Korea.
Email: leejaymin@etri.re.kr and
yongin.kwon@etri.re.kr

Funding information
This study is supported by a grant from
the Institute of Information &
Communications Technology Planning &
Evaluation (IITP), funded by the Korean
government (MSIT) (No. RS-
2023-00277060, Development of
OpenEdge AI SoC hardware and software
platform).

Abstract

Deep learning (DL) has significantly advanced artificial intelligence (AI); how-

ever, frameworks such as PyTorch, ONNX, and TensorFlow are optimized for

general-purpose GPUs, leading to inefficiencies on specialized accelerators

such as neural processing units (NPUs) and processing-in-memory (PIM)

devices. These accelerators are designed to optimize both throughput and

energy efficiency but they require more tailored optimizations. To address

these limitations, we propose the NEST compiler (NEST-C), a novel DL frame-

work that improves the deployment and performance of models across various

AI accelerators. NEST-C leverages profiling-based quantization, dynamic graph

partitioning, and multi-level intermediate representation (IR) integration for

efficient execution on diverse hardware platforms. Our results show that

NEST-C significantly enhances computational efficiency and adaptability

across various AI accelerators, achieving higher throughput, lower latency,

improved resource utilization, and greater model portability. These benefits

contribute to more efficient DL model deployment in modern AI applications.

KEYWORD S
AI accelerator, deep learning compiler, heterogeneous computing, model quantization,
multi-level IR

1 | INTRODUCTION

In recent years, deep learning (DL) has revolutionized
the field of artificial intelligence (AI), significantly
impacting areas such as image recognition, natural
language processing, and autonomous systems. DL
frameworks such as PyTorch [1], ONNX [2], and Tensor-
Flow [3] have significantly advanced the field by enabling

the development and deployment of sophisticated neural
networks.

However, these frameworks are primarily designed
for general-purpose GPUs, which can lead to inefficien-
cies in specialized tasks. To address these inefficiencies,
AI accelerators have been developed to maximize both
throughput and energy efficiency compared to GPUs.
Although AI accelerators are tailored for DL tasks, they

Received: 24 March 2024 Revised: 28 June 2024 Accepted: 13 August 2024

DOI: 10.4218/etrij.2024-0139

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition +

Change Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).

1225-6463/$ © 2024 ETRI

ETRI Journal. 2024;46(5):851–864. wileyonlinelibrary.com/journal/etrij 851

https://orcid.org/0009-0002-9524-0738
https://orcid.org/0000-0001-7319-1053
https://orcid.org/0000-0003-3091-9926
https://orcid.org/0000-0002-8500-8874
https://orcid.org/0000-0002-9332-3508
https://orcid.org/0000-0003-2973-246X
mailto:leejaymin@etri.re.kr
mailto:yongin.kwon@etri.re.kr
https://doi.org/10.4218/etrij.2024-0139
http://www.kogl.or.kr/info/licenseTypeEn.do
http://wileyonlinelibrary.com/journal/etr2

still rely on DL frameworks, creating a gap between these
DL frameworks and AI accelerators can hinder the devel-
opment and deployment of neural networks in fields with
various constraints.

Traditional DL frameworks provide abstract func-
tionalities but often lack the detailed optimizations
required by various AI accelerators. To solve this prob-
lem, DL compilers have been developed [4]. These com-
pilers take DL models developed within DL frameworks
as inputs, optimize them, and translate them for specific
hardware to produce efficient executable code. The opti-
mization process includes graph optimization, memory
management, parallel processing, quantization, and exe-
cution tuning. DL models are efficiently optimized to
run on a diverse range of hardware, from datacenter
servers to mobile devices and embedded IoT sensors.
Leading DL compilers such as tensor virtual machine
(TVM) [5], Glow [6], and XLA [7] offer specialized fea-
tures and techniques for optimization and deployment
across a wide range of applications. However, these
existing solutions often fail to optimize the performance
of newer AI accelerators such as neural processing units
(NPUs) [8–12] and processing-in-memory (PIM) [13, 14]
devices.

The rapid advancement of AI accelerators such as
NPUs and PIM devices presents significant challenges.
Traditional compilers, primarily designed for CPUs and
GPUs, struggle to maximize the performance and lever-
age the unique features of these new accelerators. This
gap necessitates a compiler framework that can
efficiently optimize DL models for these diverse AI
accelerators.

To overcome these challenges, this paper proposes
the NEST compiler (NEST-C) [15], an advanced DL com-
piler framework designed to simplify deployment and
enhance the efficient execution of DL models. As an
open-source project, NEST-C generates optimized codes
for various AI accelerators, including NPUs and PIM
devices. Furthermore, NEST-C offers tuning features and
tools tailored to the characteristics of each AI accelerator.
The main contributions of NEST-C are as follows:

• To enable DL models for heterogeneous AI accelera-
tors: NEST-C facilitates the use of DL models on a
variety of AI accelerators, such as NPUs and PIMs,
by supporting necessary adaptations for quantization
and optimization. This ensures that models can
efficiently operate across heterogeneous hardware
platforms, broadening their applicability and
performance.

• To optimize the DL model execution for multiple AI
accelerators through graph partitioning: NEST-C uti-
lizes graph partitioning techniques to efficiently

distribute the workload of DL models. This is achieved
by developing algorithms that enable dynamic task
partitioning in mixed hardware systems, which include
multiple AI accelerators, thereby maximizing compu-
tational efficiency.

• To enhance AI accelerator portability: By providing
integration interfaces at each stage of the intermediate
representation (IR) in the compilation process,
NEST-C makes it easier to connect various hardware
with compilers. This approach ensures that the
compiler can be utilized more conveniently, facilitating
seamless operation across different AI accelerators
and enhancing the system’s overall flexibility
and efficiency.

2 | BACKGROUND AND
RELATED WORK

2.1 | Common structures of DL
compilers

The general design architecture of a DL compiler is
divided into front-end and back-end architectures to
facilitate optimization and support for various hardware
platforms [4]. Additionally, there is an abstract represen-
tation known as IR. IR is a crucial concept in compiler
design that acts as a bridge between high-level program-
ming languages and machine code. This simplifies the
complex process of translating human-readable code into
instructions that can be executed by hardware. LLVM
IR [16] is among the most commonly used IRs for
targeting CPUs and GPUs, owing to its versatility and
extensive support within the LLVM compiler. However,
because it is a low-level representation, LLVM IR is not
inherently suited for optimization at the level of DL
operators, which often requires more abstract and higher
level transformations to achieve efficient execution on
various hardware platforms. Consequently, DL compilers
require higher level IRs that are better suited for expres-
sing and optimizing DL models. To accommodate the
complexity and diversity of DL models and hardware
platforms, DL compilers may employ multiple levels of
IR, each serving a different stage of the compilation pro-
cess. The front end handles DL models from frameworks
such as TensorFlow and PyTorch, performing optimiza-
tions such as operation fusion, the elimination of redun-
dant operations, and memory access optimization to
improve efficiency. It then abstracts the model’s struc-
ture and operations into standardized high-level IRs. In
the front end, a high-level IR is used to optimize the
relationships between operators and tensors in a
hardware-independent manner. For example, TVM’s

852 PARK ET AL.

relay IR [17] uses tensors and placeholders for data rep-
resentation, thereby providing scalability for various
operators. The back end uses low-level IRs, which con-
tain more hardware specifications than the higher layers.
Based on this information, it optimizes the code to
account for hardware-specific characteristics, calling
hardware-specific libraries where necessary to maximize
execution efficiency. In addition, the back end translates
the code into code that can run on actual hardware
(e.g., CPUs, GPUs, NPUs, and PIMs). In the back end, a
low-level IR is utilized for hardware-dependent optimi-
zation and code generation for the target hardware. For
instance, TVM advances the approach based on Halide,
and Glow optimizes tensor processing with command-
based IR.

2.2 | Existing DL compilers

Google’s XLA enhances TensorFlow by providing
hardware-agnostic and hardware-specific optimization
through its compiler framework. It improves execution
speeds and memory usage in DL models using techniques
such as operator fusion and buffer analysis. XLA offers
both just-in-time (JIT) and ahead-of-time (AOT) compila-
tions, supporting diverse types of hardware such as CPUs
and NVIDIA GPUs [18]. TVM, an open-source project,
employs a multi-layered optimization strategy that sepa-
rates computation from scheduling. It optimizes code
across CPUs, GPUs, FPGAs, and ASICs using its unique
IR systems RelayIR and tensor IR. Meta’s Glow focuses
on optimizing deep neural network models across various
platforms using a two-stage IR process [19], prioritizing
efficient execution and model portability. It supports
CPUs and GPUs by optimizing memory usage and execu-
tion speed.
Accelerated Linear Algebra (XLA) is developed by Google
for TensorFlow. It uses a compiler framework that per-
forms hardware-agnostic high-level and hardware-
specific low-level optimizations. The high-level optimizer
(HLO) IR is used for graph-level optimizations, and
LLVM is used for code generation. XLA optimizes Ten-
sorFlow graphs using techniques such as operator fusion,
common subexpression elimination, and buffer analysis,
resulting in improved execution speeds and memory
usage for deep neural networks (DNNs). XLA optimizes
TensorFlow graphs using techniques such as operator
fusion, common subexpression elimination, and buffer
analysis, resulting in improved execution speeds and
memory usage for DNNs.
TVM is an open-source platform that introduces a multi-
layered optimization approach. This approach separates

computation from scheduling and is inspired by Halide.
TVM’s optimization process involves graph optimization,
operator-level optimization, and automatic tuning, facili-
tated by a machine learning-based system to identify the
optimal schedule among billions of possibilities. This
approach enables efficient code generation for various
targets including CPUs, GPUs, FPGAs, and ASICs.
TVM’s IR system, consisting of Relay and TIR, abstracts
model operations and structures at different levels. This
enables precise optimizations and code generation tai-
lored to the specific characteristics of the hardware.
Graph Lowering (Glow) , developed by Facebook, aims to
optimize DNN models for efficient execution across dif-
ferent hardware platforms using a two-stage IR process.
The optimization involves high-level graph optimizations
followed by hardware-specific optimizations through
node lowering, focusing on minimizing memory con-
sumption and maximizing execution speed. Glow’s IR
enables high-level graph optimizations and decomposes
high-level operators into lower level linear algebra nodes,
enabling efficient execution on CPUs, GPUs, and ASICs.
This process prioritizes model portability while optimiz-
ing performance and uses an “in-memory form” lower
level IR for hardware-dependent optimizations and mem-
ory latency hiding.

All existing compilers were primarily designed for
CPUs and GPUs, making it challenging to adapt them
for the newly emerging NPUs and PIMs. The arrival of
complex and varied AI accelerators such as NPUs and
PIMs has significantly increased the difficulty of optimiz-
ing edge devices that incorporate these accelerators.
Moreover, they do not account for the complexities
involved in the simultaneous optimization and leveraging
of the parallel capabilities of various AI accelerators. Dis-
tinct differences exist between the current compilers
(TVM, Glow, and XLA) and NEST-C, as detailed in
Table 1. NEST-C includes features in each optimization
category that are not supported by the existing compilers
and, notably, provides broader support a wider range
of NPUs.

3 | NEST-C

3.1 | NEST-C overview

This study devised NEST-C, a DL compiler designed to
support various edge-specific AI accelerators, and
provides optimizations including graph partitioning,
quantization, and execution tuning. NEST-C supports
traditional processing units such as CPUs and GPUs
while generating optimized code for AI accelerators such

PARK ET AL. 853

as NPUs and PIMs. Its architecture is divided into three
main components: front end, middle end, and back end,
as shown in Figure 1.

Initially, the front end converts the input from a DL
model, defined within a framework such as ONNX or

PyTorch, into a graph IR. NEST-C front end, which is
fundamentally based on Glow’s IR structure, executes
basic optimizations (e.g., dead code elimination and
transpose-node optimizations), which are also applied in
Glow’s graph IR.

Secondly, NEST-C uniquely supports the characteris-
tics of resource-constrained edge AI accelerators through
its middle end, distinguishing it from traditional DL
compilers. The middle end performs hardware-
independent optimization and graph partitioning. After
receiving the graph IR from the front end, it subjects this
IR to post-training quantization, layer fusion, and opera-
tor scheduling. These processes, which are adaptable to
various AI accelerators, are executed before forwarding
an IR graph to the graph partitioner. Graph partitioning
then divides the computational graph of the model into
subgraphs, each allocated to the processing unit that best
matches its computational capacity, memory, and data-
transfer speed requirements. This strategy optimally
distributes model layers across hardware, enhancing exe-
cution efficiency, and facilitating parallel processing in
edge environments.

Finally, in the back end, various hardware-dependent
optimizations such as execution tuning, latency hiding,
and memory allocation are applied to the partitioned sub-
graphs considering the characteristics of various edge AI

TAB L E 1 Comparison of optimization features.

Optimization
feature TVM Glow XLA NEST-C

Quantization Calibration-based Int4,
Int8, and Fp16

Profiling-based Int8,
Int16, and Fp16

Profiling-based Int8,
Int16, and Fp16

Profiling-based Int8, Int16,
and Fp16; layer-wise mixed
precision

Graph partitioning Memory-based static
partitioning

Static partitioning Static and dynamic
partitioning

Profiling-based dynamic
partitioning

NPU back-end
support

VTA (open
architecture)

Habana (closed
architecture)

Google TPU EVTA, AimFuture NMP,
OpenEdge Enlight, and SK
Hynix GDDR6-AiM

Auto-tune of tile
size

Execution time
profiling, uniform tile
size, and static tile
scheduling

Execution time profiling Auto-tuning and
hardware-specific
optimization

Hardware utilization,
profiling based, ununiform
tile size, and dynamic tile
scheduling

Layer fusing and
execution

Static layer fusing and
layer-by-layer
execution

Static layer fusing and
layer-by-layer execution

Operator fusion for
optimized execution

Dynamic layer fusing and
dynamic layer execution

NN deployment on
heterogeneous
accelerators on a
device

� � � O

NN deployment on
multiple devices

� � O O

F I GURE 1 Architecture of the NEST-C ecosystem.

854 PARK ET AL.

accelerators. NEST-C employs a tensor IR to perform
hardware-dependent optimizations for each operator sep-
arately. This approach allows the fine-tuning of the per-
formance of DL models on AI accelerators by optimizing
memory usage, computational efficiency, and execution
flow based on the unique characteristics and capabilities
of each target device. The code generator creates execut-
able code by utilizing a variety of back-end code genera-
tors, including the “C code generator,” (CCodeGen)
“LLVM IR generator,” “relay IR generator,” and “NPU
code generator.” Each code generator produces code
optimized for specific processing units, which are eventu-
ally converted into executable files using compilers such
as GCC, LLVM, TVM relay, and those provided by each
back end.

3.2 | NEST-C middle end

3.2.1 | Post-training quantization and
optimal configuration procedures in NEST-C

Quantization converts a neural network’s FP32 precision
to INT8, thereby reducing its memory footprint and
accelerating inference. This technique maps floating-
point values to a narrower integer range while maintain-
ing the performance with minimal loss in accuracy. This
enables the models to run efficiently on devices with lim-
ited computational resources.

In NEST-C, as shown in Algorithm 1, to achieve
optimal quantization in terms of accuracy and latency, a
variety of configurations are supported at the compiler
level. Because quantization must be supported at the
compiler level by default, the post-training quantization
(PTQ) approach is followed. Similar to conventional
PTQ methods, NEST-C involves a profiling stage for cali-
bration before quantizing activations. Subsequently,
based on the accuracy and latency requirements, config-
urations can be selectively created for the clipping, gran-
ularity, and mixed-precision schemes. Algorithm 1 is
implemented at the compiler level. Therefore, it takes F
as input, which is the graph IR of the DL model gener-
ated during the compilation phase. The output of
Algorithm 1 is an IR F ∗ that includes the quantization
information.

Quantization can reduce accuracy. To address this
issue, the proposed algorithm sequentially applies
schemes such as clipping, granularity, and mixed preci-
sion. If none of the configurations maintains the desired
accuracy, it is considered that PTQ methods alone cannot
solve this problem, and an error is output. In such cases,
retraining the quantized model using external retraining
tools is necessary.

Detailed explanations of each configuration selected
by Algorithm 1 are provided below.

Scheme: To enhance code generation efficiency across
various hardware platforms, we emphasize uniform inte-
ger quantization, which incorporates four linear mapping
techniques: asymmetric, symmetric, symmetric with
UINT8, and symmetric power2. The notations used in
these equations are as follows. Qi8 represents the quan-
tized 8-bit integer value. V fp32 denotes the floating-point
32-bit value. S is the scale factor. Z indicates the zero
point. Vmax and Vmin denote the maximum and mini-
mum values, respectively. N symbolizes the bit
width. Asymmetric (affine mapping) converts the float
ranges to ½�2n�1, �2n�1�1�, optimally utilizing the
INT8 capacity. The quantization and dequantization pro-
cesses are defined by

Qi8 ¼ROUND
Vf 32

S
þZ

� �
, S¼Vmax �Vmin

2n�1
,

Z¼�ROUND
Vmin

S

� �
�2n�1, Vf 32 ¼ðQi8�ZÞ �S:

ð1Þ

Symmetric maps real zeros to quantized zeros without
converting the FP32 range min and max, using the abso-
lute maximum for setting qmin and qmax. Its quantiza-
tion and dequantization are

Qi8 ¼ROUND
Vf 32

S

� �
, S¼MAXðABSðV f32ÞÞ

2ðn�1Þ �1
,

Vf 32 ¼ S �Qi8:

ð2Þ

The symmetric with UINT8 scheme blends
asymmetric and symmetric methods, adapting to real-

PARK ET AL. 855

value distributions and toggling between symmetric Z =

0) and asymmetric (Z = 128) quantization as follows:

Qi8 ¼ROUND
Vf 32

S
þZ

� �
, S¼MAXðABSðV f32ÞÞ

2n�1
,

Z¼ �128, if Vmin ≥ 0, otherwise,f
Vf 32 ¼ðQi8�ZÞ �S

: ð3Þ

The symmetric with a power of two simplifies the
hardware design using bit-shift operations instead of
multiplications and is defined by

S¼ 2dlog2
MAXðABSðVf ÞÞ

2ðn�1Þ�1
e
: ð4Þ

Clipping: To mitigate accuracy loss without retraining,
the Glow compiler employs clipping to minimize the
Kullback–Leibler divergence between the floating-point
and quantized distributions, addressing the impact of
outliers in weight and activation distributions.
Granularity: The choice between tensor-wise and
channel-wise quantization granularity balances accuracy
and latency, with fine granularity increasing computa-
tional demand, particularly in convolutions with diverse
weight values.
Mixed precision: NEST-C supports mixed-precision quan-
tization by maintaining the first and last layers at their
original precision (FP32) for execution. The first and last
layers are known to be the most sensitive to quantiza-
tion [20] and are prioritized for quick mixed-precision
decisions. For additional mixed-precision applications,
developers must determine the layers that should be
quantized.

3.2.2 | Hardware-independent optimizations

Hardware-agnostic optimization focuses on the structural
and algorithmic characteristics of DL models. This
approach performs optimizations that can generally
enhance performance across all types of hardware. In
addition to the PTQ techniques previously mentioned
(Section 3.2.1), the key hardware-agnostic optimization
techniques applied in NEST-C include layer fusion and
operator scheduling.
Layer fusion: Fusion, such as combining convolution with
batch normalization and ReLU activation, serves to
increase computational efficiency and minimize memory
usage. The convolution operation, denoted by
y¼w∗xþb, when fused with batch normalization, trans-
forms into y0 ¼ γ ðw∗xþb�μÞ=½ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2þϵÞp �þβ, stream-
lining the computation by merging the standardization
directly into the convolution process. Similarly, fusing
convolution with ReLU activation simplifies the

operation to y0 ¼ maxð0, w∗ xþbÞ by applying nonlinear-
ity immediately after convolution, thereby reducing com-
putational steps and memory overhead. Layer fusion,
implemented as an optimization pass at the compiler
level, streamlines neural network operations by reducing
computational steps and memory usage, enhancing effi-
ciency and speed, especially in memory-restricted
environments.
Operator scheduling: From the perspective of IR schedul-
ing in neural network computation, the scheduling of
operators is crucial for optimizing performance. Transfor-
mations, such as in-place buffer modifications for
element-wise arithmetic, are key examples of such opti-
mizations. In this context, instructions manipulate global
variables or locally allocated buffers, with each operand
annotated using the qualifiers in, out, or inout. These
qualifiers indicate whether a buffer is read from (in),
written to (out), or both (inout), indicating to the opti-
mizer when optimizations such as copy elimination or
buffer sharing, are possible.

3.2.3 | Graph partitioner (PartitionTuner)

Typically, edge AI accelerators support a limited range of
DL operations, necessitating the partitioned execution of
DL models. Frameworks such as XLA and TVM provide
code generation for accelerators but are limited to sup-
porting only a single accelerator. To address this issue,
NEST-C integrates PartitionTuner [21], which distributes
the operations of a DL model across multiple accelerators
and synchronizes the processing of their operations to
enhance the overall performance. Figure 2 illustrates the
architecture of this approach.

Initially, the Branch Extractor analyzes the structure
of the input graph to identify branches that require
sequential execution. Subsequently, the Graph Parti-
tioner segments the graph into groups of operations for
each branch. The Profiler then generates a machine

F I GURE 2 Workflow of the PartitionTuner in NEST-C.

856 PARK ET AL.

code for each back end identified by the Back-End
Finder and profiles the execution times for each group
of operations. Based on these profiling results, a user-
modifiable Partition Policy file is automatically gener-
ated. The Partition Scheduler creates partitions based
on the Partition Policy using the back-end information
assigned to the operations. It then develops a Schedul-
ing Plan that specifies the execution sequence among
the partitions. Subsequently, based on the Scheduling
Plan, the Partition Tuner generates Scheduling Code for
each back end. This approach accurately identifies the
fastest optimal partition for each accelerator, ensuring
the optimal utilization of various accelerators within
heterogeneous computing systems. Additionally, the
overall execution speed can be significantly improved
by employing independently operable accelerators in
parallel.

3.3 | NEST-C back end

3.3.1 | Tensor IR and hardware-dependent
optimization

During graph partitioning, the hardware on which the
partitioned graph will execute is determined, and based
on this specific hardware, the IR is lowered to the tensor-
IR level. At this level, the memory size and location of
the inputs and outputs used by each operator are deter-
mined. This phase aims to find the optimal execution
code that minimizes memory usage while improving exe-
cution performance. NEST-C can dynamically allocate
the main memory with the help of the operating system
depending on the target hardware. However, this method
introduces overhead for allocation and deallocation. Fur-
thermore, if the DL tensor data are distributed across var-
ious memory areas, it could degrade the performance of
the NPU’s direct memory access.

Therefore, NEST-C calculates the total memory size
required to execute the operations of a specific partition
from beginning to end. Subsequently, it allocates that
amount of memory—preferably a contiguous block—
just once. It then devises a strategy to statically reuse
memory within that allocated space without further
assistance from the operating system. This approach
reduces memory fragmentation and allocation overhead,
ensuring efficient memory management and optimized
performance for the DL computations on the targeted
hardware.

NPUs have small internal buffers so that they can
deliver data faster than DRAM; however, they cannot
store all inputs and outputs simultaneously. Instead,

inputs from memory are partially stored, with outputs
accumulated as the computations proceed. This necessi-
tates diverse scheduling strategies such as input station-
ary, weight stationary, and output stationary [22].
“Tiling” involves storing and processing inputs and out-
puts in the buffer sequentially; an NPU requires all
inputs for a tile to be loaded and space for outputs to be
available before processing begins.

The period an NPU waits to begin operation is called
the “memory latency,” and strategies such as adjusting
the size of tiles and employing double buffering are used
to reduce this time, a practice known as “memory latency
hiding.” NEST-C provides three main optimization
approaches to maximize memory latency hiding and
determine the optimal tile size and scheduling.
Empirical discovery through device profiling: This involves
experimenting on actual devices to find optimal settings.
However, an exhaustive search of all the possible config-
urations can be time-consuming or inefficient.
Auto-tuning using machine learning: To mitigate the chal-
lenges of exhaustive search, NEST-C employs auto-tuning
techniques that leverage machine learning to streamline
the optimization process, which significantly reduces the
search space.
Utilization of performance modeling or performance accu-
rate simulators: This method involves using performance
models or simulations to search all cases. If a model or
simulator is implemented precisely, the optimal execu-
tion method can be identified quickly.

3.3.2 | Code generator

The code generator creates code tailored to the target
hardware based on the optimized tensor IR. Depending
on the target hardware, it may need to generate binary
machine code or code that conforms to the device driver
or inference library interface of the target hardware.
Alternatively, the tensor IR could be lowered to an LLVM
IR via an LLVM code generator.

It is necessary to implement a unique code generator
for each target hardware, and NEST-C provides refer-
ences that can be consulted when developing code gener-
ators for new hardware. Additionally, NEST-C offers
functionality that not only generates code for several pop-
ular models (e.g., ImageNet classification) but also auto-
matically creates code for input preprocessing and output
presentation. The code generator further includes various
back-end generators, such as C, NPU, and EVTA code
generators. The following section details the integration
of the code generator with diverse AI accelerators across
each multi-level IR.

PARK ET AL. 857

4 | DL COMPILER
IMPLEMENTATION AND
OPTIMIZATION FOR DIVERSE
TARGET HARDWARE

NEST-C enables the export of DL models to an LLVM IR,
thereby supporting a wide range of general-purpose pro-
cessors that LLVM supports, including prominent CPU
architectures from Intel and ARM. However, NEST-C
primarily targets accelerators (NPUs) specifically devel-
oped for DL computations, and the compiler implemen-
tation can be categorized into three forms based on the
hardware characteristics and interface levels provided by
these NPUs, as illustrated in Figure 1.
Using only the front end : This approach involves gen-
erating code directly from the initially created graph IR
without any optimization process such as C code genera-
tion (Section 4.1).
Utilizing the middle end : This involves performing
optimizations such as PTQ and layer fusion, generating a
partitioned graph, and then using the target hardware’s
development toolkit for the remaining compilation pro-
cess such as OpenEdge Enlight [9] (Section 4.2).
Employing the full stack of NEST-C : This approach
generates executable final code for the target hardware
directly from the optimized tensor IR that has undergone
all of NEST-C’s processes and optimizations
(e.g., AimFuture’s NMP [8]).

The development and verification of the full NEST-C
stack were initially performed using EVTA (Section 4.4),
which served as a reference NPU. AiMFuture NMP
(Section 4.3) undergoes a compilation process similar to
that of EVTA. OpenEdge Enlight (Section 4.2) imple-
ments the compiler up to the middle end of NEST-C.
Additionally, implementations utilizing NEST-C include
SK Hynix’s GDDR6-AiM [13] and TVM’s Relay, showcas-
ing the flexibility and adaptability of NEST-C to a broad
spectrum of computational platforms for DL.

4.1 | CCodeGen: C code generation

The CCodeGen automatically generates C/C++ code
compatible with common cross-compilers, such as GCC
and LLVM directly from the output of the DL framework.
This is important when deploying DL models on hetero-
geneous computing systems. In heterogeneous computing
systems with varying requirements, developers must
manually compile, translate, and deploy DL models into
machine code or back-end inputs for each hardware type.
This process places a heavy burden on developers. There-
fore, CCodeGen generates C/C++ code that can be used
by most computing systems, making it easier for

developers to support heterogeneous devices. CCodeGen
parses the input DL model to generate a dataflow graph
(DFG), which encompasses the operations, input/output
information, and parameters of the DL model. Next, using
the DFG, it generates “inference.c” and “inference.h,” C
code files that contain inference functions, and “weight.
bin,” a binary file that contains the trained weights used
for inference. Figure 3 illustrates an example of the opera-
tion library. The API is defined using C++ template func-
tions to ensure that the operation functions are not
dependent on the variable types (such as float, INT16,
and INT8). Additionally, it allows users to select the type
of compiler provided by the device (GCC or LLVM), auto-
matically handling any differences in syntax between
compilers. Moreover, it includes the option to decide on
the use of different libraries, such as OpenBLAS.

4.2 | Graph-IR implementation

Chip vendors provide their own back-end compilers for
commercial-grade AI semiconductors. Therefore, to
reduce the development effort and generate high-quality
final target code, it is necessary to integrate NEST-C with
compilers provided by chip vendors. NEST-C offers
ONNX conversion functionality for integration with pri-
vate back-end compilers at the graph-IR level. As
explained previously, hardware-independent optimiza-
tions are performed at graph-IR level. Then, the graph IR
is serialized and stored according to the YAML meta-
format. After normalizing the stored meta file to align
with the ONNX format, an ONNX suitable for input to
the private compiler provided by commercial-grade AI
semiconductor manufacturers is generated. As shown in
Figure 1, for the conversion from graph IR to ONNX,
NEST-C includes four functional modules: Partition to
YAML, ONNX IR Legalizer, Sanity Checker with ONNX-
Runtime, and Partial ONNX Exporter.
Partition to YAML: This module divides the input model
into partitions of the desired size. A partition can

F I GURE 3 API and code example of the operation library.

858 PARK ET AL.

represent either an entire model or a specific group of
consecutive operators. The generated YAML file includes
information regarding each partition and the names of
the operators used in the IR graph. This information is
utilized for code generation tailored to the partitioning or
integration with specific back-end compilers.
ONNX IR Legalizer: This module performs normalization
to resolve representation differences between the graph
IR and the ONNX IR. This step is necessary for convert-
ing the graph IR into ONNX IR while ensuring consis-
tency in the representation.
Sanity Checker with ONNXRuntime: To verify that the
model converted to ONNX functions correctly, this mod-
ule uses ONNXRuntime, a compiler for general-purpose
CPUs, to validate the model’s results.
Partial ONNX Exporter: This module converts and stores
the YAML meta file in the ONNX format. This step con-
verts the metafile, after hardware-independent optimiza-
tion, to the final ONNX format.

Using this structure, NEST-C partitions and normal-
izes the input model before generating the final ONNX
format model. This model undergoes hardware-
independent optimization and is integrated with the
Enlight compiler, enabling hardware-accelerated infer-
ence. This approach also allows for the integration of a
third-party private compiler.

4.3 | Tensor-IR implementation

The neuromorphic processor (NMP) is an embedded
evaluation board developed by LG Electronics centered
on a novel architecture designed to facilitate efficient DL
operations. The foundational principle of the NMP’s
design involves leveraging RISC-V instruction set archi-
tecture extensions to create specialized instructions for
various CNN components, including convolutional
layers, fully connected layers, pooling layers, and
element-wise operations. The architecture of the NMP
features a multicore NPU comprising several processors.
Each processor houses multiple processing units, each
equipped with a RISC-V core, a multiply-accumulate
unit, and memory buffers to support the computational
demands of neural network processing.
Quantization for NMP NMP is a hardware accelerator
that supports only integers in Q-format. Therefore,
NEST-C middle end for NMP must ensure that all DL
models are quantized into Q-format. For Q-format quan-
tization, the minimum and maximum values of all ten-
sors holding floating-point values are calculated, and
NEST-C determines the most suitable format, either
INT8 or INT16, as supported by NMP. This process
allows the precise representation of floating-point

numbers within the fixed-point integer constraints of the
NMP, thereby optimizing both the accuracy and effi-
ciency of DL computations.
Back-end optimization for NMP Because each processing
unit in NMP possesses its own buffer and accelerator,
operations must be well tiled and distributed, similar to
EVTA. Whereas EVTA determines the optimal tile size
and number of buffers by profiling the execution perfor-
mance on real devices considering only output stationary
scheduling, NMP considers input stationary, weight sta-
tionary, and output stationary scheduling. It uses a per-
formance model to exhaustively search for and identify
the best performance across all scenarios. This compre-
hensive approach enables NMP to optimize the resource
allocation and processing efficiency for diverse computa-
tional patterns in DL operations.

4.4 | EVTA

EVTA is a custom NPU based on the VTA [23] from the
Apache TVM project. It modifies VTA’s compute module
to include an MOV instruction, reducing power usage
and improving performance by eliminating DRAM data
transfers between the output and input buffers. Moreover,
EVTA supports diverse operations (INT8, FP16, FP32,
and binary) and allows multiple NPUs to work together
and share DRAM resources, as illustrated in Figure 4.

EVTA’s IR is extended within the structure of NEST-
C’s graph IR and tensor IR to meet the hardware charac-
teristics and optimization requirements.
Graph-IR and middle-end optimization At the middle end
of NEST-C, efforts are made to minimize DRAM access
and maximize hardware utilization by changing the data
layout according to the DL operators and performing
layer fusion optimizations. The compute module of
EVTA can process ReLU operations in conjunction with
matrix multiplication; hence, ReLU is fused with convo-
lution and fully connected operators. Because EVTA can

F I GURE 4 EVTA architecture and configuration.

PARK ET AL. 859

only perform matrix multiplication during the middle-
end stage, it transforms a 4-dimensional input into a
6-dimensional one, converting the last two dimensions
into a matrix size that EVTA can process in one cycle.
Additionally, EVTA’s graph IR was implemented to rep-
resent such a six-dimensional data layout. Following this,
graph partitioning is performed according to the configu-
ration of multi-EVTA, and it is then lowered to tensor IR.
Tensor IR and back-end optimization In NEST-C back
end, as the graph IR is lowered to tensor IR, the execu-
tion order of each operator and the DRAM storage loca-
tions for the operator’s input and output data are
determined. For EVTA, the inputs must be tiled because
the buffer size is limited. Double buffering is utilized to
maximize memory latency hiding. The extent of latency
hiding varies with the tile size and number of buffers,
and NEST-C employs profiling and auto-tuning to deter-
mine the optimal tile size and number of buffers.
Codegen NEST-C provides the EVTA execution library
along with the device driver, featuring an interface in the
format of Figure 5. NEST-C generates the code according
to the execution library interface. For convolution opera-
tions, the arguments also include optimized tile sizes and
the number of buffers. The generated code is designed to
allow the device driver to parse the arguments at runtime
and immediately execute the code.

NEST-C is tasked with handling a large number of
tensor data and deep layers. The code generated by
NEST-C computes each layer, and the results are tem-
porarily stored in DRAM. To ensure that the EVTA
developed using NEST-C is error free, it is necessary to
validate the computational results with respect to the
expected values. For this purpose, NEST-C supports a
debugging mode that allows the temporary results
stored in DRAM for each layer to be outputted to a file.
The results of the operations may differ slightly,
depending on the hardware and data type. NEST-C
accommodates these differences by allowing the toler-
ance level to be set.

5 | EXPERIMENTS AND
EVALUATION

The performance of AI accelerators and heterogeneous
systems using NEST-C was evaluated in three experi-
ments. First, we conducted an EVTA with PartitionTuner

experiment to demonstrate the reduction in latency and
improved computational efficiency when using both CPU
and NPU resources with NEST-C. Next, to verify the
portability of NEST-C, we tested it with two types of com-
mercial AI accelerators: AimFuture NMP for the tensor-
IR interface and OpenEdge Enlight for the graph-IR
interface. These experiments encompassed a variety of
DL models trained on ImageNet [24], including GoogLe-
Net [25], ResNeXt50 [26], ResNet50 [27], ResNet18 [27],
MNIST [28], LeNet [29], MobileNetV2 [24], and Squeeze-
Net [30]. Considering the diversity in the types of opera-
tions supported by each AI accelerator, distinct DL
models were chosen for each experiment.

5.1 | EVTA with PartitionTuner

The Xilinx ZCU102 platform was used to evaluate the
performance of employing EVTA in NEST-C.
The ZCU102 provides a quad-core ARM Cortex-A53 CPU
and FPGA. Four EVTAs were ported to the FPGA on the
Xilinx ZCU102 platform to run at 333 MHz. CCodeGen
was used to generate the machine code for the CPU. The
model was partitioned by CPU and NPU using Partition-
Tuner, which also performed the quantization for the
EVTAs. Table 2 shows a significant reduction in latency
when NPUs are used in conjunction with the CPU
instead of using the CPU alone. However, increasing the
number of NPUs does not significantly reduce latency.
This is because quantization and data dimension trans-
formation operations required to use NPUs are executed
on the CPU, which is much slower than the NPUs. The
parallel execution of these operations by two NPUs and
the CPU limits fully parallel processing. Therefore, to
improve the performance of multiple NPUs, it is impor-
tant to partition and schedule the model.

F I GURE 5 EVTA execution library interface for convolution.

TABL E 2 Latency (ms) of the DL models on multi-EVTA.

Baseline NEST-C (EVTA)

CPU CPU + NPU CPU + 2NPUs

Resnet18 1262.45 247.41 125.09

Resnet50 3180.52 654.33 580.38

ResNext50 6717.05 1645.90 756.45

GoogLeNet 1455.75 497.52 287.94

SqueezeNet 297.56 175.98 97.91

AlexNet 884.60 789.10 -

EfficientNet 6178.70 2820.72 -

ZFNet512 1673.95 1662.54 -

MNasNet 1258.35 866.04 -

860 PARK ET AL.

5.2 | Tensor-IR interface evaluation

To assess the performance of AI accelerators at the
tensor-IR level in NEST-C, the NMP [22] board provided
by AimFuture was utilized. Various DL models were
evaluated, including MNIST, LeNet, ResNet18, ResNet50,
SqueezeNet, and Inception. Performance evaluations for
each DL model within NEST-C were conducted and com-
pared with the performance data from XLA provided by
NMP. The model accuracy provided by Google Tensor-
Flow was used as baseline. Table 3 shows that most of
the reference models exhibited results similar to the base-
line accuracy, suggesting that NEST-C was effectively
implemented at the tensor-IR level within NMP. Unlike
NMP’s XLA, which is optimized directly by the hardware
manufacturer, NEST-C automatically performs optimiza-
tion at the compiler level through hardware profiling.
Despite this, the latency performance of NEST-C was
very close to that of NMP’s XLA, indicating its ability to
maintain optimal performance even when new AI accel-
erators were integrated.

5.3 | Graph-IR interface evaluation

The proposed common ONNX-based interface was used
to experimentally validate the successful linkage between
the general AI compiler and the private NPU compiler.
For a comparative evaluation, the results generated by
integrating Enlight and NEST-C were compared with the
performance results of Resnet50 and MobileNetV2 DL
models on general hardware CPUs and GPUs supported
by the existing NEST-C.

OpenEdge Enlight supports various layer types,
including convolution layers with kernel sizes ranging
from 1�1 to 7�7 and strides from 1 to 4. The depth-wise
convolution layer supports a 3�3 kernel with strides
ranging from 1 to 2. The supported activation functions
include Bypass, ReLU, Leaky ReLU, Sigmoid, Tanh, and

Mish. Additionally, pooling operations are supported
with configurations of 4:1 (2�2) and Stride 2, which are
available in max/average and global average pooling
modes.

The experimental results, as shown in Figure 6A,
indicate a decrease in accuracy when models are exe-
cuted on OpenEdge Enlight. This decrease was due to the
quantization process, which reduced the model precision
from 32 to 8 bits. Despite this reduction, the models
maintained acceptable performance.

In terms of the inference latency, as depicted in
Figure 6B, the integration of NEST-C and OpenEdge
Enlight achieved impressive inference times of 9 ms for
MobileNetV2 and 107 ms for Resnet50. This performance
is significantly faster than the inference times on an Intel
i7 CPU, which are 59.9 ms for MobileNetV2 and
136.9 ms for Resnet50. It is also comparable to the results
on an NVIDIA 2080ti GPU, which are 15.35 ms for Mobi-
leNetV2 and 14.8 ms for Resnet50.

5.4 | Discussion and limitations

The experimental results demonstrated the effectiveness
and versatility of the NEST-C framework across various

TAB L E 3 Accuracy and latency of the DL models on NMP.

NEST-C (NMP) XLA (NMP)
TensorFlow

Accuracy Latency Accuracy Latency Accuracy
Top 1 (ms) Top 1 (ms) Top 1

MNIST 98.2 0.163 - - 98.90

LeNet 94.8 0.635 99.9 0.199 94.80

Resnet18 66.8 22.477 - - 69.93

Resnet50 71.3 67.385 70.7 55.927 74.93

SqueezeNet 48.7 14.269 47.1 12.504 49.00

Mobilenet 70.2 70.077 70.9 14.03 71.80

Inception 74.2 30.59 76.9 72.686 77.90

(A) (B)

F I GURE 6 Accuracy and latency of the models on the targets

(Intel i7-8700 CPU, 2080ti GPU, and U280 FPGA-based NPU).

PARK ET AL. 861

AI accelerators, showing significant improvements in
latency reduction and computational efficiency. The por-
tability of NEST-C was validated through tests using
AimFuture NMP and OpenEdge Enlight, which main-
tained optimal performance across different hardware
platforms. However, owing to the constraints of using
commercial hardware, we were limited to experimenting
with DL models provided by hardware manufacturers,
which restricted the range of models tested. Additionally,
there is a potential accuracy loss owing to quantization
from 32 to 8 bits, and further evaluation is needed to
understand the scalability of NEST-C with large models
and datasets. Addressing these limitations in future stud-
ies will enhance the robustness and efficiency of NEST-C
for diverse AI applications.

6 | CONCLUSIONS

This study developed NEST-C, a novel DL compiler
framework designed to improve the deployment and per-
formance of DL models across various AI accelerators.
The experimental results demonstrate that NEST-C sig-
nificantly enhances computational efficiency and adapt-
ability, achieving higher throughput and lower latency
through profiling-based quantization, dynamic graph par-
titioning, and multi-level IR integration. Despite the limi-
tations of testing with a limited range of DL models
owing to commercial hardware constraints, NEST-C
maintained its optimal performance across different hard-
ware platforms. Despite being constrained to a limited
range of DL models provided by hardware manufac-
turers, NEST-C demonstrated its potential for broader
applicability.

Future work will focus on addressing the current
limitations by extending the range of tested models, mini-
mizing accuracy loss due to quantization, and evaluating
the scalability of NEST-C with larger models and data-
sets. By overcoming these challenges, we aim to further
enhance the robustness and efficiency of NEST-C, ensur-
ing its adaptability to a wider array of hardware platforms
and DL tasks. Additionally, NEST-C was primarily
designed to optimize DNNs used for image recognition.
Therefore, we plan to extend its capabilities to support
large-language models and transformer architectures to
suit the evolving DL research environments.

CONFLICT OF INTEREST STATEMENT
The authors declare that there are no conflicts of interest.

ORCID
Jeman Park https://orcid.org/0009-0002-9524-0738
Misun Yu https://orcid.org/0000-0001-7319-1053

Jinse Kwon https://orcid.org/0000-0003-3091-9926
Junmo Park https://orcid.org/0000-0002-8500-8874
Jemin Lee https://orcid.org/0000-0002-9332-3508
Yongin Kwon https://orcid.org/0000-0003-2973-246X

REFERENCES
1. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.

Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A.
Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A.
Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S.
Chintala, PyTorch: an imperative style, high-performance deep
learning library, (Proc. 33rd Int. Conf. Neural Inf. Process.
Syst., Vol. 32, Curran Associates Inc., Red Hook, NY, USA),
2019.

2. ONNX Contributors, Open Neural Network Exchange
(ONNX), 2024. https://github.com/onnx/onnx,_2024. Accessed:
2024-03-18.

3. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M.
Devin, S. Ghemawat, G. Irving, and M. Isard, TensorFlow: a
system for large-scale machine learning, (12th USENIX Symp.
Operating Syst. Des. Implementation (OSDI’16)., Savannah,
GA, USA), 2016, pp. 265–283.

4. M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L.
Gan, G. Yang, and D. Qian, The deep learning compiler: a com-
prehensive survey, IEEE Trans. Parallel Distrib. Syst. 32 (2020),
no. 3, 708–727.

5. T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M.
Cowan, L. Wang, Y. Hu, and L. Ceze, TVM: an automated
end-to-end optimizing compiler for deep learning, (13th USE-
NIX Symp. Operating Syst. Des. Implementation (OSDI’18),
Carlsbad, CA, USA), 2018, pp. 578–594.

6. N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R.
Dzhabarov, N. Gibson, J. Hegeman, M. Lele, and R.
Levenstein, Glow: graph lowering compiler techniques for neu-
ral networks, arXiv preprint, 2018. https://doi.org/10.48550/
arXiv.1805.00907

7. C. Leary and T. Wang, XLA: TensorFlow, compiled, 2017. Ten-
sorFlow Dev Summit.

8. AiM Future, The future of artificial intelligence: AiM future’s
product lineup, 2023. https://aimfuture.ai. Accessed: 2024-03-22.

9. OPENEDGES, Neural processing unit (NPU) IP—ENLIGHT,
2022. URL https://www.openedges.com/npu. Accessed:
2024-03-22.

10. J.-W. Jang, S. Lee, D. Kim, H. Park, A. S. Ardestani, Y. Choi,
C. Kim, Y. Kim, H. Yu, H. Abdel-Aziz, J.-S. Park, H. Lee, D.
Lee, M. W. Kim, H. Jung, H. Nam, D. Lim, S. Lee, J.-H. Song,
S. Kwon, J. Hassoun, S. Lim, and C. Choi, Sparsity-aware and
re-configurable NPU architecture for Samsung Flagship Mobile
SoC, (ACM/IEEE 48th Annu. Int. Symp. Comput. Archit.,
Valencia, Spain), 2021, pp. 15–28.

11. Qualcomm, Unlocking on-device generative AI with an NPU
and heterogeneous computing, 2024. https://www.qualcomm.
com. Accessed: 2024-03-22.

12. Apple, Deploying transformers on the Apple Neural Engine,
2023. https://machinelearning.apple.com/research/deploying-
transformers-on-the-apple-neural-engine. Accessed: 2024-
03-22.

13. Y. Kwon, K. Vladimir, N. Kim, W. Shin, J. Won, M. Lee, H.
Joo, H. Choi, G. Kim, and B. An, System architecture and

862 PARK ET AL.

https://orcid.org/0009-0002-9524-0738
https://orcid.org/0009-0002-9524-0738
https://orcid.org/0000-0001-7319-1053
https://orcid.org/0000-0001-7319-1053
https://orcid.org/0000-0003-3091-9926
https://orcid.org/0000-0003-3091-9926
https://orcid.org/0000-0002-8500-8874
https://orcid.org/0000-0002-8500-8874
https://orcid.org/0000-0002-9332-3508
https://orcid.org/0000-0002-9332-3508
https://orcid.org/0000-0003-2973-246X
https://orcid.org/0000-0003-2973-246X
https://github.com/onnx/onnx,_2024
https://doi.org/10.48550/arXiv.1805.00907
https://doi.org/10.48550/arXiv.1805.00907
https://aimfuture.ai
https://www.openedges.com/npu
https://www.qualcomm.com
https://www.qualcomm.com
https://machinelearning.apple.com/research/deploying-transformers-on-the-apple-neural-engine
https://machinelearning.apple.com/research/deploying-transformers-on-the-apple-neural-engine

software stack for GDDR6-AiM, (IEEE Hot Chips 34 Symp.,
Cupertino, CA, USA), 2022, pp. 1–25.

14. Samsung, HBM-PIM: cutting-edge memory technology to accel-
erate next-generation AI, 2023. https://semiconductor.samsung.
com/. Accessed: 2024-03-18.

15. ETRI, NEST-C. https://gitlab.com/ones-ai/nest-compiler.
Accessed: 2024-03-22.

16. C. Lattner and V. Adve, LLVM: a compilation framework for
lifelong program analysis & transformation, (Int. Symp. Code
Gener. Optim., San Jose, CA, USA), 2004, pp. 75–86.

17. J. Roesch, S. Lyubomirsky, L. Weber, J. Pollock, M. Kirisame,
T. Chen, and Z. Tatlock, Relay: a new IR for machine learning
frameworks, (Proc. 2nd ACM SIGPLAN Int. Workshop Mach.
Learn. Program. Lang., Association for Computing Machinery,
Philadelphia, PA, USA), 2018, pp. 58–68.

18. J. Dean, Machine learning for systems and systems for machine
learning, Presentation at 2017 Conf. Neural Inf. Process. Syst.,
Curran Associates, Long Beach, CA, USA, 2017.

19. Meta, Glow’s Graph IR optimization. https://github.com/
pytorch/glow/blob/master/docs/Optimizations.md. Accessed:
2024-02-22.

20. J. Lee, M. Yu, Y. Kwon, and T. Kim, Quantune: Post-training
quantization of convolutional neural networks using extreme
gradient boosting for fast deployment, Future Gener. Comput.
Syst. 132 (2022), 124–135.

21. Y. Misun, K. Yongin, L. Jemin, P. Jeman, P. Junmo, and K.
Taeho, PartitionTuner: an operator scheduler for deep-learning
compilers supporting multiple heterogeneous processing units,
ETRI J. 45 (2023), no. 2, 318–328.

22. R. Sousa, M. Pereira, Y. Kwon, T. Kim, N. Jung, C. S. Kim,
M. Frank, and G. Araujo, Tensor slicing and optimization for
multicore NPUs, J. Parallel Distrib. Comput. 175 (2023),
66–79.

23. T. Moreau, T. Chen, L. Vega, J. Roesch, E. Yan, L. Zheng, J.
Fromm, Z. Jiang, L. Ceze, C. Guestrin, and A. Krishnamurthy,
A hardware-software blueprint for flexible deep learning special-
ization, IEEE Micro 39 (2019), no. 5, 8–16.

24. J. Deng, W. Dong, and R. Socher, ImageNet: a large-scale hier-
archical image database, (IEEE Conf. Comput. Vision Pattern
Recognit., Miami, FL, USA), 2009, pp. 248–255.

25. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, Going deeper
with convolutions, (Proc. IEEE Conf. Comput. Vision Pattern
Recognit. (CVPR), Boston, MA, USA), 2015, pp. 1–9.

26. S. Xie, R. Girshick, P. Doll�ar, Z. Tu, and K. He, Aggregated
residual transformations for deep neural networks, (IEEE Conf.
Comput. Vision Pattern Recognit. (CVPR), Honolulu, HI,
USA), 2017, pp. 1492–1500.

27. K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for
image recognition, (IEEE Conf. Comput. Vision Pattern Recog-
nit. (CVPR), Las Vegas, NV, USA), 2016, pp. 770–778.

28. L. Deng, The MNIST database of handwritten digit images for
machine learning research, IEEE Signal Process. Mag. 29
(2012), no. 6, 141–142.

29. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based
learning applied to document recognition, Proc. IEEE 86 (1998),
no. 11, 2278–2324.

30. F. N. Iandola, S. Han, and M. W. Moskewicz, SqueezeNet: Alex-
Net-level accuracy with 50x fewer parameters and <0.5MB

model size, arXiv preprint, 2016. https://doi.org/10.48550/
arXiv.1602.07360

AUTHOR BIOGRAPHIES

Jeman Park received his BS, MS,
and PhD degrees in Electronics and
Computer Engineering from Hanyang
University, Republic of Korea, in
2004, 2006, and 2014, respectively. He
is a senior researcher at the Electron-
ics and Communications Research

Institute, Daejeon, Republic of Korea. His research
interests include computer networks, edge computing,
and deep learning compilers.

Misun Yu received the MS degree
from the Department of Computer
Science and Engineering at Pohang
University of Science and Technol-
ogy, Republic of Korea. She is a prin-
cipal researcher at the Electronics
and Communications Research Insti-

tute Daejeon, Republic of Korea. Her main research
interests include concurrent program analysis, soft-
ware testing, deep learning, and embedded systems.

Jinse Kwon received MS and PhD
degrees in Computer Science and
Engineering from Chungnam
National University, Daejeon, Repub-
lic of Korea in 2017 and 2024, respec-
tively. He is currently a researcher at
the Electronics and Telecommunica-

tions Research Institute, Daejeon, Republic of Korea.
His research interests include deep learning compilers
and on-device computing.

Junmo Park received the BS degree
in Computer Science from Kwang-
woon University, Seoul, Republic of
Korea in 2012 and the MS degree
from the Graduate School of Conver-
gence Science and Technology at
Seoul National University, Republic

of Korea, in 2020. He joined Samsung Electronics in
Hwaseong, Republic of Korea, in 2012, where he has
been involved in compiler optimization and develop-
ment. Since 2020, he has been working as a Principal
Software Engineer on mobile GPU compilers. His
research interests include deep learning, compilers,
embedded systems, HW/SW co-design, and
optimization.

PARK ET AL. 863

https://semiconductor.samsung.com/
https://semiconductor.samsung.com/
https://gitlab.com/ones-ai/nest-compiler
https://github.com/pytorch/glow/blob/master/docs/Optimizations.md
https://github.com/pytorch/glow/blob/master/docs/Optimizations.md
https://doi.org/10.48550/arXiv.1602.07360
https://doi.org/10.48550/arXiv.1602.07360

Jemin Lee received his BS and PhD
degrees in Computer Science and
Engineering from Chungnam
National University, Daejeon,
Republic of Korea, in 2011 and 2017,
respectively. He is currently a senior
researcher at the Electronics and

Telecommunications Research Institute, Daejeon,
Republic of Korea. Since 2023, he has also served as
an assistant professor in the AI Department at the
University of Science and Technology, Daejeon,
Republic of Korea. He was a postdoctoral researcher
at the Korea Advanced Institute of Science and Tech-
nology, Daejeon, Republic of Korea from 2017 to
2018. His research interests include energy-aware
mobile computing and deep learning compilers.

Yongin Kwon received the BSc
degree in Electrical and Electronic
Engineering from the Korea
Advanced Institute of Science and
Technology, Daejeon, Republic
of Korea, in 2008, and MS and PhD
degrees in Electrical and Computer

Engineering from Seoul National University, Republic
of Korea, in 2010 and 2015, respectively. From 2015 to
2019, he worked for Samsung Electronics as a Staff
Software Engineer. Since 2019, he has been with the
Electronics and Telecommunications Research Insti-
tute, Daejeon, Republic of Korea, where he is cur-
rently a senior researcher. His research interests
include neural processing units, compilers, deep
learning, and embedded systems.

How to cite this article: J. Park, M. Yu, J. Kwon,
J. Park, J. Lee, and Y. Kwon, NEST-C: A deep
learning compiler framework for heterogeneous
computing systems with artificial
intelligence accelerators, ETRI Journal 46 (2024),
851–864, DOI 10.4218/etrij.2024-0139

864 PARK ET AL.

info:doi/10.4218/etrij.2024-0139

