Acknowledgement
This work was supported by the Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korea government (24ZS1230, memory-computation convergence neuromorphic computing technology).
References
- S. Davidson and S. B. Furber, Comparison of Artificial and Spiking Neural Networks on Digital Hardware, Front. Neurosci. 15 (2021), 651141.
- M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, and Y. Liao, Loihi: A Neuromorphic Manycore Processor With On-Chip Learning, IEEE Micro 38 (2018), no. 1, 82-99.
- S. Uenohara and K. Aihara, CMOS Mixed-Signal Spiking Neural Network Circuit Using a Time-Domain Digital-To-Analog Converter, (IEEE Int. Symp. Circuits and Systems, Daegu, Rep. of Korea), 2021, pp. 1-5.
- J. K. Eshraghian, X. Wang, and W. D. Lu, Memristor-Based Binarized Spiking Neural Networks: Challenges and Applications, IEEE Nanotechnol, Mag. 16 (2022), no. 2, 14-23.
- S. Hwang, J. Yu, G. H. Lee, M. S. Song, J. Chang, K. K. Min, T. Jang, J.-H. Lee, B.-G. Park, and H. Kim, Capacitor-Based Synaptic Devices for Hardware Spiking Neural Networks, IEEE Electron Device Lett. 43 (2022), no. 4, 549-552.
- K.-I. Oh, S.-E. Kim, T.-W. Kang, H. Kim, and J.-J. Lee, Design of 0.9v-Operating Low-Power AI SNN Analog Core, (Autumn Annual Conference of IEIE, Gwangju, Rep. of Korea), 2020, pp. 932-933.
- S. Hwang, H. Kim, J. Park, M.-W. Kwon, M.-H. Baek, J.-J. Lee, and B.-G. Park, System-Level Simulation of Hardware Spiking Neural Network Based on Synaptic Transistors and I&F Neuron Circuits, IEEE Electron Device Lett. 39 (2018), no. 9, 1441-1444.
- A. Joubert, B. Belhadj, O. Temam, and R. Heliot, Hardware Spiking Neurons Design: Analog or Digital? (Int. Joint Conf. on Neural Networks, Brisbane, Australia), 2012, pp. 1-5.
- S. Kim, S. Kim, S. Um, S. Kim, K. Kim, and H.-J. Yoo, NeuroCIM: ADC-Less Neuromorphic Computing-In-Memory Processor With Operation Gating/Stopping and Digital-Analog Networks, IEEE J. Solid-State Circ. 2023 (2023), 2931-2945.
- G. Bi and M. Poo, Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type, J. Neurosci. 18 (1998), no. 24, 10464-10472.
- P. U. Diehl and M. Cook, Unsupervised Learning Of Digit Recognition Using Spike-Timing-Dependent Plasticity, Front. computat. Neurosci. 9 (2015), 99.
- S. Song, K. D. Miller, and L. F. Abbott, Competitive Hebbian Learning Through Spike-Timing-Dependent Synaptic Plasticity, Nature Neurosci. 3 (2000), no. 9, 919-926.
- P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer, Fast-Classifying, High-Accuracy Spiking Deep Networks Through Weight and Threshold Balancing, (Int. Joint Conf. Neural Networks, Killarney, Ireland), 2015, pp. 1-8.
- B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification, Frontiers Neurosci. 11 (2017), 682.
- W. Guo, M. E. Fouda, A. M. Eltawil, and K. N. Salama, Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems, Front. Neurosci. 15 (2021), 638474.
- R. Banner, Y. Nahshan, and D. Soudry, Post Training 4-Bit Quantization of Convolutional Networks for Rapid-Deployment, Adv. Neural Inform. Process. Sys. 32 (2019), 7950-7958.
- Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev, Low-Bit Quantization of Neural Networks for Efficient Inference, (IEEE/CVF Int. Conf. Computer Vision Workshop, Seoul, Rep. Korea), 2019, pp. 3009-3018.
- B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko, Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference, (Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA), 2018, pp. 2704-2713.
- R. Krishnamoorthi, Quantizing Deep Convolutional Networks for Efficient Inference: A Whitepaper, arXiv preprint, 2018. https://doi.org/10.48550/arXiv.1806.08342
- K. Han, S. Lee, K.-I. Oh, Y. Bae, H. Jang, J.-J. Lee, W. Lee, and M. Pedram, Developing TEI-Aware Ultralow-Power SoC Platforms for IoT End Nodes, IEEE Int. Things J. 8 (2021), no. 6, 4642-4656.
- E. Choi, J. Park, K. Lee, J.-J. Lee, K. Han, and W. Lee, Day-Night Architecture: Development of an Ultra-Low Power RISC-V Processor for Wearable Anomaly Detection, J. Syst. Architect. 152 (2024), 103161. https://doi.org/10.1016/j.sysarc.2024.103161
- H. Jang, K. Han, S. Lee, J.-J. Lee, S.-Y. Lee, J.-H. Lee, and W. Lee, Developing a Multicore Platform Utilizing Open RISC-V Cores, IEEE Access 9 (2021), 120010-120023.
- J. Park, E. Choi, K. Lee, J.-J. Lee, K. Han, and W. Lee, Developing an Ultra-Low Power RISC-V Processor for Anomaly Detection, (Design, Automation & Test in Europe Conf. & Exhibition, Antwerp, Belgium), 2023, pp. 1-2.
- J. Park, K. Han, E. Choi, S. Lee, J.-J. Lee, W. Lee, and M. Pedram, Florian: Developing a Low-Power RISC-V Multicore Processor With a Shared Lightweight FPU, (IEEE/ACM Int. Symp. Low Power Electronics and Design, Vienna, Austria), 2023, pp. 1-6.
- Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-Based Learning Applied to Document Recognition, Proc.IEEE 86 (1998), no. 11, 2278-2324.
- J. Rodge, Binary-Image-Classifier-pytorch, 2024. https://github.com/jayrodge/Binary-Image-Classifier-PyTorch/tree/master/face
- ORCA, Orca-RISC-V, 2024. https://github.com/kammoh/ORCA-risc-v
- K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson, B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman, The Rocket Chip Generator. UCB/EECS-2016-17. EECS Department, University of California, Berkeley, 2016. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html