DOI QR코드

DOI QR Code

Free-space quantum key distribution transmitter system using WDM filter for channel integration

  • Minchul Kim (Quantum Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Kyongchun Lim (Quantum Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Joong-Seon Choe (Quantum Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Byung-Seok Choi (Quantum Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Kap-Joong Kim (Quantum Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Ju Hee Baek (Quantum Technology Research Division, Electronics and Telecommunications Research Institute) ;
  • Chun Ju Youn (Quantum Technology Research Division, Electronics and Telecommunications Research Institute)
  • 투고 : 2024.03.24
  • 심사 : 2024.08.20
  • 발행 : 2024.10.10

초록

In this study, we report a transmitter system for free-space quantum key distribution (QKD) using the BB84 protocol, which does not require an internal alignment process, by using a wavelength-division multiplexing (WDM) filter and polarization-encoding module. With a custom-made WDM filter, the signals required for QKD can be integrated by simply connecting fibers, thus avoiding the laborious internal alignment required for free-space QKD systems using conventional bulk-optic setups. The WDM filter is designed to multiplex the single-mode signals from 785-nm quantum and 1550-nm synchronization channels for spatial-mode matching while maintaining the polarization relations. The measured insertion loss and isolation are 1.8 dB and 32.6 dB for 785 nm and 0.7 dB and 28.3 dB for 1550 nm, respectively. We also evaluate the QKD performance of the proposed system. The sifted key rate and quantum bit error rate are 1.6 Mbps and 0.62%, respectively, at an operating speed of 100 MHz, rendering our system comparable to conventional systems using bulk-optic devices for channel integration.

키워드

과제정보

The authors thank Dr. Hae Young Rha for her contribution to the development of real-time data processing using the FPGA.

참고문헌

  1. P. W. Shor and J. Preskill, Simple proof of security of the BB84 quantum key distribution protocol, Phys. Rev. Lett 85 (2000), no. 2, 441.
  2. F. Xu, X. Ma, Q. Zhang, L. K. Lo, and J. W. Pan, Secure quantum key distribution with realistic devices, Rev. Modern Phys. 92 (2020), no. 2, 025002.
  3. S.-K. Liao, H. L. Yong, C. Liu, G. L. Shentu, D. D. Li, J. Lin, H. Dai, S. Q. Zhao, B. Li, J. Y. Guan, W. Chen, Y. H. Gong, Y. Li, Z. H. Lin, G. S. Pan, J. S. Pelc, M. M. Fejer, W. Z. Zhang, W. Y. Liu, J. Yin, J. G. Ren, X. B. Wang, Q. Zhang, C. Z. Peng, and J. W. Pan, Long-distance free-space quantum key distribution in daylight towards inter-satellite communication, Nat. Photonics 11 (2017), no. 8, 509-513.
  4. S.-K. Liao, W. Q. Cai, W. Y. Liu, L. Zhang, Y. Li, J. G. Ren, J. Yin, Q. Shen, Y. Cao, Z. P. Li, F. Z. Li, X. W. Chen, L. H. Sun, J. J. Jia, J. C. Wu, X. J. Jiang, J. F. Wang, Y. M. Huang, Q. Wang, Y. L. Zhou, L. Deng, T. Xi, L. Ma, T. Hu, Q. Zhang, Y. A. Chen, N. L. Liu, X. B. Wang, Z. C. Zhu, C. Y. Lu, R. Shu, C. Z. Peng, J. Y. Wang, and J. W. Pan, Satellite-to-ground quantum key distribution, Nature 549 (2017), no. 7670, 43-47.
  5. H. Takenaka, A. Carrasco-Casado, M. Fujiwara, M. Kitamura, M. Sasaki, and M. Toyoshima, Satellite-to-ground quantumlimited communication using a 50-kg-class microsatellite, Nat. Photonics 11 (2017), no. 8, 502-508.
  6. J. S. Sidhu, T. Brougham, D. McArthur, R. G. Pousa, and D. K. Oi, Finite key effects in satellite quantum key distribution, Npj Quantum Inf. 8 (2022), no. 1, 18.
  7. J. S. Sidhu, T. Brougham, D. McArthur, R. G. Pousa, and D. K. Oi, Finite key performance of satellite quantum key distribution under practical constraints, Commun. Phys 6 (2023), no. 1, 210.
  8. A. V. Khmelev, E. I. Ivchenko, A. V. Miller, A. V. Duplinsky, V. L. Kurochkin, and Y. V. Kurochkin, Semi-empirical satelliteto-ground quantum key distribution model for realistic receivers, Entropy 25 (2023), no. 4, 670.
  9. A. Ntanos, N. K. Lyras, A. Stathis, G. Giannoulis, A. D. Panagopoulos, and H. Avramopoulos, Satellite-to-ground QKD in urban environment: a comparative analysis of small-sized optical ground stations, IEEE Aerosp. Electron. Syst. Mag. 39 (2024), no. 6, 16-29.
  10. E. Eso, C. Simmons, G. S. Buller, and R. Donaldson, Impact of visibility limiting conditions on satellite and high-altitude platform quantum key distribution links, Opt. Express 32 (2024), no. 15, 26776-26792.
  11. Ren JG, Abulizi M, Yong HL, Yin J, Li XJ, Jiang Y, Wang WY, Xue HJ, Chen YH, Jin B, Yin YY, Portable ground stations for space-to-ground quantum key distribution, arXiv preprint, 2022. DOI 10.48550/arXiv.2205.13828
  12. T. Roger, R. Singh, C. Perumangatt, D. G. Marangon, M. Sanzaro, P. R. Smith, R. I. Woodward, and A. J. Shields, Realtime gigahertz free-space quantum key distribution within an emulated satellite overpass, Sci. Adv 9 (2023), no. 48, eadj5873.
  13. W.-Q. Cai, Y. Li, B. Li, J. G. Ren, S. K. Liao, Y. Cao, L. Zhang, M. Yang, J. C. Wu, Y. H. Li, W. Y. Liu, J. Yin, C. Z. Wang, W. B. Luo, B. Jin, C. L. Lv, H. Li, L. You, R. Shu, G. S. Pan, Q. Zhang, N. L. Liu, X. B. Wang, J. Y. Wang, C. Z. Peng, and J. W. Pan, Free-space quantum key distribution during daylight and at night, Optica 11 (2024), no. 5, 647-652.
  14. H. Chun, I. Choi, G. Faulkner, L. Clarke, B. Barber, G. George, C. Capon, A. Niskanen, J. Wabnig, D. O'Brien, and D. Bitauld, Handheld free space quantum key distribution with dynamic motion compensation, Opt. Express 25 (2017), no. 6, 6784-6795.
  15. G. Vest, P. Freiwang, J. Luhn, T. Vogl, M. Rau, L. Knips, W. Rosenfeld, and H. Weinfurter, Quantum key distribution with a hand-held sender unit, Phys. Rev. Appl. 18 (2022), no. 2, 024067.
  16. J.-P. Bourgoin, B. L. Higgins, N. Gigov, C. Holloway, C. J. Pugh, S. Kaiser, M. Cranmer, and T. Jennewein, Free-space quantum key distribution to a moving receiver, Opt. Express 23 (2015), no. 26, 33437-33447.
  17. S. Nauerth, F. Moll, M. Rau, C. Fuchs, J. Horwath, S. Frick, and H. Weinfurter, Air-to-ground quantum communication, Nat. Photonics 7 (2013), no. 5, 382-386.
  18. C. J. Pugh, S. Kaiser, J. P. Bourgoin, J. Jin, N. Sultana, S. Agne, E. Anisimova, V. Makarov, E. Choi, B. L. Higgins, and T. Jennewein, Airborne demonstration of a quantum key distribution receiver payload, Quantum Sci. Technol 2 (2017), no. 2, 024009.
  19. H.-Y. Liu, X. H. Tian, C. Gu, P. Fan, X. Ni, R. Yang, J. N. Zhang, M. Hu, J. Guo, X. Cao, X. Hu, G. Zhao, Y. Q. Lu, Y. X. Gong, Z. Xie, and S. N. Zhu, Drone-based entanglement distribution towards mobile quantum networks, Nat. Sci. Rev. 7 (2020), no. 5, 921-928.
  20. H. Y. Liu, X. H. Tian, C. Gu, P. Fan, X. Ni, R. Yang, J. N. Zhang, M. Hu, J. Guo, X. Cao, and X. Hu, Optical-relayed entanglement distribution using drones as mobile nodes, Phys. Rev. Lett. 126 (2021), no. 2, 020503.
  21. A. Conrad, S. Isaac, R. Cochran, D. Sanchez-Rosales, T. Rezaei, T. Javid, A. J. Schroeder, G. Golba, D. Gauthier, and P. Kwiat, Drone-based quantum communication links, In Quantum Computer, Communication, Simulation III, Vol. 12446, SPIE, 2023, p99-106.
  22. J.-S. Choe, H. Ko, B. S. Choi, K. J. Kim, and C. J. Youn, Silica planar lightwave circuit based integrated 1  4 polarization beam splitter module for free-space BB84 quantum key distribution, IEEE Photonics J. 10 (2018), no. 1, 1-8.
  23. H. Ko, J. S. Choe, B. S. Choi, K. J. Kim, J. H. Kim, Y. Baek, and C. J. Youn, Daylight operation of a high-speed free-space quantum key distribution using silica-based integration chip and micro-optics-based module, (Optical Fiber Communications Conference and Exhibition, San Diego, CA, USA), 2019, 1-3
  24. H. Ko, B. S. Choi, J. S. Choe, K. J. Kim, J. H. Kim, and C. J. Youn, Critical side channel effects in random bit generation with multiple semiconductor lasers in a polarization-based quantum key distribution system, Opt. Express 25 (2017), no. 17, 20045-20055.
  25. H. Ko, B. S. Choi, J. S. Choe, K. J. Kim, J. H. Kim, and C. J. Youn, High-speed and high-performance polarization-based quantum key distribution system without side channel effects caused by multiple lasers, Photonics Res. 6 (2018), no. 3, 214-219.
  26. H. Ko, K. J. Kim, J. S. Choe, B. S. Choi, J. H. Kim, Y. Baek, and C. J. Youn, Experimental filtering effect on the daylight operation of a free-space quantum key distribution, Sci. Rep. 8 (2018), no. 1, 1-7.
  27. M. Avesani, L. Calderaro, M. Schiavon, A. Stanco, C. Agnesi, A. Santamato, M. Zahidy, A. Scriminich, G. Foletto, G. Contestabile, and M. Chiesa, Full daylight quantumkey-distribution at 1550 nm enabled by integrated silicon photonics, Npj Quantum Inf 7 (2021), no. 1, 93.
  28. Choi BS, Ko H, Choe JS, Kim KJ, Youn CJ, Kim JH, Baek Y., Micro-optics based polarization decoding module for free-space quantum key distribution, (23rd Opto-Electronics and Communications Conference, Jeju, Republic of Korea), 2018. DOI 10.1109/OECC.2018.8729879