
S P E C I A L I S S U E

Metaheuristic optimization scheme for quantum kernel
classifiers using entanglement-directed graphs

Yozef Tjandra | Hendrik Santoso Sugiarto

Calvin Institute of Technology, Jakarta,
Indonesia

Correspondence
Hendrik Santoso Sugiarto, Calvin
Institute of Technology, Jakarta,
Indonesia.
Email: hendrik.sugiarto@calvin.ac.id

Funding information
This work was funded by PT Lancs Arche
Consumma (MOU.003/CIT/XI/2022) and
PT Astra International TBK - TSO
(MOU.002/CIT/XI/2022).

Abstract

Entanglement is crucial for achieving quantum advantages. However, in the

context of quantum machine learning, existing optimization strategies for

generating quantum classifier circuits often result in unentangled circuits,

indicating an underutilization of the entanglement effect needed to learn com-

plex patterns. In this study, we proposed a novel metaheuristic approach—
genetic algorithm—for designing a quantum kernel classifier that incorporates

expressive entanglement. This classifier utilizes a loopless entanglement-

directed graph, where each directed edge represents the entanglement between

the target and control qubits. The proposed method consistently outperforms

classical and quantum baselines across various artificial and actual datasets,

achieving improvements up to 32.4% and 17.5%, respectively, compared with

the best model among all other baselines. Moreover, this method successfully

reconstructs the hidden entanglement structures underlying artificial datasets.

The results also demonstrate that the optimized circuits exhibit diverse entan-

glement variations across different datasets, indicating the versatility of the

proposed approach.

KEYWORD S
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1 | INTRODUCTION

Quantum computing promises a novel computational
capacity that surpasses traditional classical computation.
This capacity primarily arises from obscure quantum
features such as superposition and entanglement. How-
ever, the current availability of quantum computers is
limited to noisy intermediate-scale quantum (NISQ)
frameworks [1], which restrict the potential of quantum
computers to compete with more mature classical com-
puters. Despite these limitations, a recent demonstration
of quantum supremacy showed that even imperfect NISQ

devices can significantly outperform classical computers
in specific cases [2]. This progress has encouraged
researchers to actively explore other practical areas of
quantum advantages within NISQ frameworks [3, 4].

Quantum machine learning (QML) is a domain where
quantum advantages can be utilized within NISQ devices
[5, 6]. Numerous investigations have been conducted to
extend classical machine-learning models to quantum
computation frameworks. Various supervised classifica-
tion models now have quantum equivalents, such as
quantum k-nearest neighbors and quantum convolu-
tional networks [7, 8].
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The QML framework was proposed to enable more
expressive pattern recognition by harnessing quantum
computational advantages, which are difficult to replicate
classically [9]. Within this framework, a variational
method has been proposed, where a set of parameters is
optimized within a quantum circuit to facilitate classifica-
tion [10, 11]. Another alternative approach adopts a suc-
cessful classical technique called the kernel support
vector machine (SVM) [12, 13]. In the quantum version
of this kernel method, each data point transforms the
Hilbert space to enhance the expressive power of the
space, aiding the SVM in constructing linear decision
boundaries [14, 15]. Theoretical studies have suggested
that both quantum and classical approaches are funda-
mentally equivalent when they reach their optimal form
[16, 17]. Consequently, this study focuses on designing
an optimal quantum kernel for SVM classification.

In this framework, data are first converted into a quan-
tum state for processing by a quantum computer.
A common conversion strategy involves designing a spe-
cific quantum circuit known as a quantum feature map.
However, the rationale behind selecting various proposed
maps remains unclear, suggesting the existence of poten-
tially excellent but unexplored alternatives. Various studies
have employed metaheuristic approaches to design opti-
mal circuits for both variational and kernel methods [18,
19]. Interestingly, within this framework, most optimized
circuits are not entangled, as the optimization schemes
either provide minimal flexibility for subtle entanglement
scheme design or employ ineffective gate choices.

Because entanglement is a key component of quan-
tum advantages, these results suggest unexplored oppor-
tunities for utilizing entangled circuits in designing
quantum feature maps. Addressing this gap, our research
aims to design a new optimization scheme for discovering
suitable entangled circuits. These circuits are configured
as directed graphs, where the entanglement connections
between qubit pairs can be either included or excluded.
Therefore, our approach explores a more exhaustive
entanglement graph combinatorial search space using a
tailored metaheuristic optimization scheme.

The main contributions of this study are as follows:
(i) the design of a combinatorial optimization scheme for
identifying the most optimal Pauli feature map with
entanglement digraphs to enhance classification perfor-
mance, and (ii) an analysis of performance improvements
compared with classical and quantum baselines.

2 | RELATED WORKS

This study explores the intersection of optimization
methods and quantum circuit designs, focusing on

multiple criteria within a machine-learning context. Spe-
cifically, we employ a metaheuristic optimization frame-
work known as a genetic algorithm (GA), which mimics
natural selection processes to identify the most suitable
solutions across successive generations [20]. GAs are
extensively applicable in numerous classical optimization
domains, encompassing theoretical challenges, such as
the metric dimension problem in graph theory and practi-
cal applications such as neural network architecture
optimization in machine learning [21, 22].

GAs can be particularly beneficial for optimizing quan-
tum circuits for diverse purposes. The design of optimal
quantum circuits remains an open problem for various
applications [23, 24]. In the QML context, GAs have been
applied to automatically generate quantum feature maps
to enhance SVMs [25]. The same authors later expanded
their method by incorporating classical dimensionality
reduction strategies to accommodate more intricate data-
sets [18]. Moreover, comparative analysis between SVMs
enhanced by evolutionary-based kernels and the varia-
tional Ansatz method has been performed [26]. More
recently, GAs have been employed to identify optimal
Pauli feature maps for specific datasets [19].

Several alternative methods to GA optimization have
also been proposed for automatically generating quantum
circuits to enhance various machine-learning tasks. For
example, a Parzen estimator has been proposed to iden-
tify optimal antenna circuits [27]. A Bayesian approach
has recently been introduced to adaptively construct
feature maps for SVM tasks [28]. Beyond the QML
domain, GA are also applied to determine optimal circuit
configurations within parametric quantum circuit design
frameworks [29].

In contrast to the aforementioned approaches, this
study focuses on incorporating the Pauli feature map
family with more flexible entanglement graph arrange-
ments and designing a metaheuristic scheme to generate
such feature maps for specific datasets. This approach
aims to fully utilize entanglement as the main feature of
quantum advantage. Graph information is accommo-
dated in various quantum-inspired models [30–32].

3 | METHODS

3.1 | Quantum kernel classifier

In a supervised machine-learning context, patterns and
relationships between input data and their corresponding
labels are learned using a trainable model. When dealing
with complex data that cannot be separated linearly, a
nonlinear classifier is required. The kernel SVM is an
extensively used nonlinear classifier [12]. The kernel

794 TJANDRA and SUGIARTO



SVM transforms the original dataset into a feature space
with higher dimensions using a particular function, facil-
itating a linear separation between different classes.

The kernel SVM binary prediction for test data (x
!0
) is

ŷðx!0Þ¼ sgn
XM

m¼1

cmymKðx!m, x
!0Þþb

!
, ð1Þ

where cm and b denote the trainable parameters of the
classical SVM, ym represents the instance label of x

!
m,

and Kðx!m, x
!0Þ denotes the kernel function between the

training instance x
!

m and the test instance x
!0
. The RBF

kernel Kðx!, z
!Þ¼ exp �γkx� zk2� �

is a well-known exam-
ple of a classical kernel owing to its good performance.

In the quantum setting, the kernel function is
calculated using a specific quantum circuit that maps low-
dimensional classical data into high-dimensional quantum
states, enabling quantum interactions among data points.
These quantum feature maps can be customized to cap-
ture specific data patterns, thereby improving model per-
formance. The fundamental concept underlying quantum
kernels is the efficient computation of the inner product
of pairs of quantum data. These inner products are used

to derive the feature kernel Kðx!, z!Þ¼ hΨðx!ÞjΨð z!Þi
���

���
2
.

Quantum advantages can be harnessed by leveraging
these quantum inner products [33].

3.1.1 | Quantum feature map

Hereafter, let n be the number of data features used in
the classification. To obtain quantum data jΨðx!Þi, a
quantum feature map is used. Within a quantum feature
map, the input data undergo transformation via specific
unitary operations, resulting in a new quantum state vec-
tor that encompasses higher-order correlations among the
original data points (jΨðx!Þi¼Uðx!Þj0i

N
n). Quantum fea-

ture maps can effectively generate intricate mappings that
are difficult to compute using classical methods.

Quantum feature maps have demonstrated effective-
ness across various machine-learning tasks, and many
studies have focused on novel types of quantum feature
maps and their practical applications in machine-
learning problems [25, 33]. The ZZ feature map is a nota-
ble quantum feature map that is expensive to simulate
classically that has yielded promising outcomes in several
contexts [34, 35]. The quantum gate arrangement is
also associated with the special case of a second-order
Pauli feature map. Specifically, for the 2-qubit cases of
Pauli feature maps based on the sequence ½Z,ZZ�, the
Pauli unitary expansion can be written as

Uϕðx!Þ ¼ expðix0Z0þ ix1Z1þ iðπ� x0Þðπ� x1ÞZ0Z1Þ: ð2Þ

The first two terms represent the RZ rotation
gate for each qubit: expðix0Z0Þ ¼ RZð2x0Þ and
expðix1Z1Þ¼RZð2x1Þ. The final tensor product term
expðiðπ� x0Þðπ�x1ÞZ0Z1Þ can be rearranged into
an entangled quantum circuit
CX � ðINRZð2ðπ� x0Þðπ� x1ÞÞÞ �CX .

3.1.2 | Augmented Pauli feature map with
an entanglement-directed graph

The Pauli feature map can be further relaxed to allow
greater flexibility in arranging two-qubit gates for any
qubit pair. Specifically, we modify herein the original
Pauli feature map into two types of unitary operators:
rotation operators RΘðx!Þ and entangled graph operators
EΦðx!Þ,S, as follows:

Uðx!Þj0i
N

n ¼EΦðx!Þ,SH
N

nRΘðx!ÞH
N

nj0i
N

n: ð3Þ

The rotation operators are defined as follows,

RΘðx!Þ ¼ exp i
X

0≤ j<n

θjðx!ÞPj

!
, ð4Þ

where θjðx!Þ¼ xj and Pj is a rotation matrix chosen from
the set fRX , RY , RZ , Ig that acts on the jth qubit. Thus,
there are four choices for each qubit to select its rotation
gate, resulting in 4n possible configurations.

Next, the entangled Pauli expansion matrix EΦðx!Þ is

EΦðx!Þ,S ¼ exp i
X

ðj,kÞ � S

ϕjkðx!ÞPjPk

0
@

1
A, ð5Þ

where ϕjkðx!Þ¼ ðπ�xjÞðπ�xkÞ serves as the quantum
data interaction for features j and k, and set S represents
a certain 2-qubit entanglement arrangement. Specifically,
S consists of pairs of two distinct qubit indices ðj, kÞ,
representing a two-qubit gate between the control qubit j
and target qubit k involving Pauli matrices Pj and Pk.
Note that our scheme follows the general form of the
Pauli feature map by restricting the entanglement set S to
include only 2-subsets of indices while generalizing the
GA encoding scheme in PauliGA [19].

We note that the entanglement configuration for this
operator can be summarized in the form of a loopless
directed graph G¼ðQ, SÞ, where Q represents the set of
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qubits as the vertex set, and S denotes the set of entangle-
ment relationships as the directed edge set. Hence, there
are 2nðn�1Þ entanglement schemes. This directed graph
structure was optimized to obtain the best-performing
quantum feature map. To observe the subtle differences
in the quantum circuits between entanglement schemes
modeled by oppositely directed edges ði, jÞ and ðj, iÞ, as
well as the variations in the order of Pauli matrices Pi

and Pj, refer to Figure 1.
Furthermore, we provide an example of a quantum

feature map for five features with a rotation operator
given by

R¼ expðiðx0X0þx1Z1þx2Y 2þ x3I3þx4Z4ÞÞ

and an entangled graph operator

E¼ exp i
X

ðj,kÞ � S

ðpi� xjÞðπ� xkÞXjYk

0
@

1
A

with S¼ {(1, 0), (2, 0), (1, 3), (3, 2), (4, 0), (1, 4), (2, 4)}.
The directed graph representation and the quantum cir-
cuit are shown in Figure 4.

3.2 | Genetic algorithm

The main method used in this study was metaheuristic;
specifically, we adopted a GA to optimize the Pauli quan-
tum feature map with an entanglement configuration to
enhance the performance of the SVM. This method is
known to overcome the challenge of local minima by
combining random exploitation and exploration within
the search space [20]. The proposed GA design, which
utilizes the ðμþλÞ strategy, is outlined in Figure 2.
Additionally, the pseudocode for the overview algorithm
is available in Algorithm 1 in supporting information
Appendix B. Initially, the algorithm generates a popula-
tion of random individuals, each encoded as a binary
string representing an instance of the Pauli quantum fea-
ture map, which serves as a candidate solution. The algo-
rithm then computes the fitness values for each
individual in the population through multiple repetitions
and, with certain probabilities, applies genetic operators
(distinct from quantum operators) to select the fittest
individual, representing the best solution to the optimiza-
tion problem. Note that the likelihood of an individual’s
survival increases as a function of its fitness value.

F I GURE 1 Listings of the ð0,1Þ and ð1,0Þ entanglements with

Pj,Pk � fX ,Yg.

F I GURE 2 Overall description of the genetic algorithm (GA) used for generating high-performing quantum feature maps.
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Genetic operators consist of a selection operator used for
exploitation and crossover and mutation operators used
for exploration. These are employed to produce λ new off-
springs in each iteration.

This iterative process is repeated for a specific number
of generations, which is a hyperparameter of the
GA. Typically, the fittest individual from the previous
generation is returned as the final solution. An additional
evaluation of the final solution is conducted using a sepa-
rate test case to determine its overall effectiveness of the
GA solution.

3.2.1 | Genetic encoding

The quantum feature map design is based on three
aspects: the entanglement digraph, initial rotation gates,
and Pauli strings. Each of these components is encoded
using ðn2�nÞ, 2n, and 4 binary bits, respectively. In
other words, each gene in the population is a binary
string with a total length of n2þnþ4. The entanglement
digraph, which does not allow loops, is represented by
directed edges denoted as ðj, kÞ for some indices j≠ k.
This results in n2�n possible directed edges, each con-
trolled by a single bit of the genetic code. For each qubit,
an initial gate is selected from four possible choices
(RX , RY , RZ), or an identity gate I, encoded using two
binary bits. This allocation of 2n binary bits in the

individual genes controls all initial rotation gates. The
final 4 bits of the genetic code are employed to select the
Pauli entanglement scheme, which is represented by a
Pauli string of length two. Each digit in this string is cho-
sen from the set fX , Y , Z, Ig, with the encoding utiliz-
ing four binary bits. Figure 3 provides a detailed
explanation of the technical interpretations of each block
of bits, and Figure 4 provides an example illustrating of
how the encoding works.

3.2.2 | Fitness values

The versatility of GA encoding enables the representation
of intricately entangled circuits, showcasing its potential
to yield commendable classification performance. Never-
theless, as circuit complexity increases, managing error
corrections for near-term quantum computers may
become impractical. In this study, we constructed a fit-
ness function designed to balance optimal classification
performance with the avoidance of excessively complex
circuits. An overview of this technique is shown in
Figure 2B.

Specifically, we used the F1 score as the classification
evaluation metric because it can tackle imbalanced data-
sets. In addition, in this study, we define circuit complex-
ity as the number of gates involved in the circuit. Hence,
to maximize classification performance and minimize cir-
cuit complexity, we define the fitness function as follows:

Fitness¼Complexityþ w
F1-Score

, ð6Þ

where w is a positive constant selected experimentally to
balance the two objectives.

3.2.3 | Genetic operators

An overview of the functioning of genetic operators is
shown in Figure 2C. In the context of κtournament selec-
tion, κ random individuals from the population are

F I GURE 4 Example of decoding a genetic code into a quantum feature map.

F I GURE 3 Genetic encoding scheme of the GA for the Pauli

feature map family with an entanglement-directed graph.
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chosen to compete in the tournament. The individuals
with the highest fitness values won the tournament and
advanced to subsequent genetic operators. In this study,
a value of κ¼ 5 was used. The selected parents were then
randomly paired, and a crossover occurred with a certain
probability. This involved choosing two random indices
to define an interval for gene exchange between parent
pairs (see Figure 2C, ii). Each individual also had a
chance to mutate, and some genes flipped with a fixed
probability (see Figure 2C, iii). These probabilities were
treated as hyperparameters of the GA model and
were fine-tuned experimentally for optimal performance.

4 | DATA

4.1 | Datasets

To assess the effectiveness of the proposed method, it was
tested on several artificial and actual datasets. We
designed artificial datasets such that data points with dif-
ferent labels can be geometrically separated by a feature
map with a specific entanglement graph, thus modifying
the scheme introduced in the original quantum kernel
publication [14]. Technically, we assigned binary classes
ŷ to the data features x

!
� ½0, 2π�n, that is,

ŷðx!Þ¼ 1, ifhΨðx!ÞjV†MV jΨðx!Þi>Δ,

0, ifhΨðx!ÞjV†MV jΨðx!Þi< �Δ,

(
ð7Þ

where the expectation values require a random unitary
vector V � SUð2nÞ and a majority operator M with a

Boolean function (f : f0,1gn 7!f0,1g) that maps to class
1 if more than half of the bit-string digits are “1,” and to
class 0 otherwise. The observable V†MV is then operated
in the predefined feature maps jΨðx!Þi¼Uðx!Þj0i

N
n with

Uðx!Þ as stated in (3), using specific entanglement
schemes. Furthermore, a particular real-valued gap, Δ¼
0:3 between the expected values was chosen for data
separation.

We generated six artificial datasets with various fea-
tures and entanglement structures. The parameters of
these datasets are listed in Table 1. The Z and ZZ opera-
tors are intentionally chosen as the initial rotation and
entangled graph operators, respectively, to facilitate a
meaningful comparison of our method with ZZ feature
map baselines.

Moreover, we tested the performance of the proposed
method on several small real-world datasets with varying
numbers of features (Table 2). Access to these datasets
was facilitated using the OpenML Python Package [36].
Details for each dataset used in the study are presented
in Tables 1and 2.

4.2 | Data preprocessing and validation

To prepare for training, each numerical feature was nor-
malized, whereas categorical data features were mapped
into discretized numerical points within the normalized
interval. The dataset was then partitioned into an 80%
training set and a 20% testing set. To avoid overfitting, we
further divided the training set into four groups using a
4-fold cross-validation approach. Within each group, the
model underwent training and testing, yielding two key

TAB L E 1 Feature map parameters used for generating artificial datasets.

Dataset No. of features Entanglement directed edges Initial rotation Pauli string

3-path 3 {(0, 1), (1, 2)} ZZZ [“ZZ”]

3-clique 3 {(0, 1), (0, 2), (1, 2)} ZZZ [“ZZ”]

3-biclique 3 {(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 2)} ZZZ [“ZZ”]

4-path 4 {(0, 1), (1, 2), (2, 3)} ZZZZ [“ZZ”]

4-clique 4 {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)} ZZZZ [“ZZ”]

4-biclique 4 {(0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (1, 3), (2, 0),
(2, 1), (2, 3), (3, 0), (3, 1), (3, 2)}

ZZZZ [“ZZ”]

TAB L E 2 Specifications of actual datasets.

Dataset Iris Blood Irish Veteran Liver Telescope

Source [37] [38] [39] [40] [41] [42]

No. of features 4 4 5 7 10 10

No. of instances 150 748 500 137 583 500

No. of labels 3 2 2 2 2 2
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classification evaluation metrics: accuracy and F1 score
(macro-averaged). The average scores from the 4-fold
groups were used as fitness values for the GA. This
4-fold scheme ensures that the feature map obtained
during training does not overly cater to a specific subset of
the training set while performing poorly on others. After
the GA determines the best feature map, it uses the entire
80% of the training set for the final training iteration. The
overall evaluation of the model was then determined using
the remaining 20% of the test set, which remained unseen
by the model during the evolutionary training process.

5 | RESULTS AND DISCUSSION

5.1 | Experimental settings

In this section, we assess the effectiveness of our method
in generating quantum feature maps for both artificial
and actual datasets. The GA hyperparameters used in the
study are listed in Table 3. These values were further
modified and refined through experimental adjustments
based on other GA realizations [19, 25]. The construction
of the quantum circuit described in this study was imple-
mented on classical computers using the IBM-Qiskit
framework with an Aer Backend [43].

We selected four classical, eight quantum, and one
quantum-GA classifier for comparison with our method.
For the classical baselines, we employed an SVM model
with linear, polynomial, sigmoid, and RBF kernels. For
the quantum baselines, we considered two basic quan-
tum classifier paradigms: a quantum kernel SVM (QSVC)
and a variational quantum classifier (VQC). The
(QSVC) employs four basic circuits derived from the Pauli
feature map family (X, Y, Z, and ZZ feature maps) and
two recently proposed entangled kernels in linear (ent-
QSVC(lin)) and full (ent-QSVC(full)) fashion [44]. The
(VQC) employs two types of quantum circuits: hardware-
efficient Ansatz (HEA) and modified hardware-efficient
Ansatz (MHEA) [45]. Examples of these circuits are

provided in the supporting information Appendix C.
Finally, the GA-assisted quantum kernel baseline was
obtained using the Pauli-GA scheme [19].

The results for the artificial and actual datasets are
listed in Tables 4 and 5. All the performance metrics were
derived from the test dataset, which comprised instances
that were not included in the training process. The high-
est metric scores for each dataset are highlighted in bold,
whereas the best scores for each baseline group are
shown in italics. We also quantified the improvements
obtained by the proposed method over the best among all
the baselines. A summary of the best feature maps pro-
duced by the proposed method is presented in Table 6.

5.2 | Model performance in artificial
datasets

Based on comparisons across all six proposed artificial
datasets, our method consistently and significantly out-
performed the other classical and quantum baselines
yielding a 32.4% improvement, as shown in Table 4.
Some of the best classical baselines, such as the polyno-
mial and RBF kernels, can distinguish 3-feature entangle-
ment combinations but struggle with more complex
patterns like 4-feature entangled combinations. This is
reasonable as the edge configuration of a 3-vertex graph
is much simpler and more limited than that of larger
graphs. For the quantum baselines, the entangled-QSVC
kernels (both linear and full) tend to outperform the
other baselines owing to their entanglement structures.
However, even their best performances are still inferior
to our method’s performance. This is likely because our
approach offers greater flexibility in adjusting to any hid-
den entanglement structures within the dataset, in con-
trast to the fixed entangled quantum baselines.

By further investigating the entanglement patterns
generated by the best individuals using our method
(Table 6), we found that they closely resembled the
original operators and entanglement digraphs underlying
the artificial datasets. For the 3-feature datasets, the best-
generated individuals were exactly matched. There were
slight differences, particularly in terms of the initial
rotation choices in the artificial 4-feature datasets. By
observing 4-path and 4-biclique datasets, our method
perfectly captures the original entanglement digraphs
used to generate the data. However, the digraph pro-
duced by the proposed GA method for the 4-clique data-
set only slightly differs in terms of the edge directions.
This signifies the ability of the proposed GA method to
discover effectively specific entangling patterns that suit
the classification tasks on particular datasets.

TAB L E 3 GA hyperparameters used in the optimization

process.

Hyperparameter Value

Population size (μ) 100

Offspring size (λ) 60

Number of generations 200

Crossover probability 0.3

Individual mutation probability 0.7

Bitflip mutation probability 0.25
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5.3 | Model performance in actual
datasets

Similarly, across the six actual datasets, our method out-
performed other classical and quantum baselines, as
shown in Table 5. Among the baselines, the unentangled
kernels generally performed the poorest, while the best-
performing models were either classical SVC or quantum
classifiers involving specific entanglement schemes.
However, the GA-crafted quantum kernels yielded signif-
icantly better results, with improvements of up to 17.5%
compared with the best baseline performances. This indi-
cates that enhancing the performance of a QSVC for a
particular dataset requires modifying the subtle architec-
ture of the quantum feature maps rather than relying on
regular patterns provided by quantum kernel baselines.

Notably, among the six optimal circuits generated by
our method from each actual dataset, only two—those
from the“blood” and “telescope” datasets—included
entangling gates. Although these are not the primary
results, we briefly report that none of the best circuits
obtained from other Pauli-GA baselines involved entan-
glements, further demonstrating the expressiveness of
our method. Although some entangling circuits may per-
form as well as non-entangling alternatives, the GA
scheme might penalize these circuits due to their com-
plexity. In such cases, entangled circuits may not be nec-
essary to achieve good performance.

Additionally, our method’s ability to freely choose the
entanglement combinations of the Pauli feature maps
(the Pauli string choices) contributes significantly to
identifying a classifier with improved performance. While
all other quantum baselines rely on the ZZ-type entangle-
ment owing to its versatility in various contexts, our
method can discover alternative entanglement types. This
is evident from the final GA-generated entangling quan-
tum feature maps for the “blood” and “telescope” data-
sets, which do not follow the ZZ-type entanglement form.
This suggests that the Pauli string is unsuitable for these
specific datasets, but our method can identify a more
effective configuration.

Whether using an entangling or not, the flexibility of
our method in selecting entangling qubits plays a crucial
role in enhancing classification results. Even without
entangling the gates, our method outperformed the Pauli
GA baseline alternative. However, while our method can
discover entangled feature maps, the Pauli GA baseline
cannot find such configurations. This highlights the
proposed method’s ability to detect a suitable quantum
feature map with a more defined entanglement configu-
ration, leading to improved classification performance for
specific datasets.

To assess the reliability of our method on NISQ
devices, we provide an upper bound on the number of
qubits for which our GA-generated circuits remain feasi-
ble. Assuming state-of-the-art error rates of 10�4 [46], we

TAB L E 6 Best individual circuit parameters among all tested datasets.

Group Dataset
No. of
features Entanglement_scheme Initial_rotation Pauli_string

artificial 3-path 3 [(0, 1), (1, 2)] ZZZ [“ZZ”]

3-clique 3 [(0, 1), (2, 0), (1, 2)] ZZZ [“ZZ”]

3-biclique 3 [(0, 1), (1, 0), (2, 0), (0, 2), (1, 2), (2, 1)] ZZZ [“ZZ”]

4-path 4 [(0, 1), (1, 2), (2, 3)] ZYYZ [“ZZ”]

4-clique 4 [(0, 1), (2, 0), (3, 0), (1, 2), (3, 1), (2, 3)] ZZZY [“ZZ”]

4-biclique 4 [(0, 1), (1, 0), (2, 0), (3, 0), (0, 2), (1, 2), (2, 1), (3, 1), (0, 3), (1, 3),
(2, 3), (3, 2)]

YZZZ [“ZZ”]

actual iris 4 [(0, 1), (1, 0), (2, 1), (1, 3), (2, 3), (3, 2)] ZIYZ [“IX”]

blood 4 [(1, 0), (2, 0), (3, 0), (0, 2), (1, 2), (2, 1), (0, 3), (2, 3), (3, 2)] ZZZY [“YZ”]

irish 5 [(0, 3), (4, 2), (2, 4)] ZYYIX [“IY”]

veteran 7 [(0, 1), (2, 0), (3, 0), (0, 2), (1, 2), (1, 3), (3, 2), (4, 2), (5, 2), (0, 4),
(1, 4), (3, 4), (0, 5), (2, 5), (3, 5), (4, 5), (5, 4), (3, 6), (6, 5)]

ZZYYZZY [“ZI”]

liver 10 [(3, 0), (4, 0), (6, 0), (7, 0), (0, 2), (3, 1), (1, 3), (5, 2), (6, 2), (7, 2),
(8, 2), (4, 3), (5, 3), (7, 3), (1, 5), (2, 5), (3, 5), (6, 4), (1, 6), (2, 6),
(3, 6), (5, 6), (7, 5), (4, 7), (5, 7), (0, 9), (2, 9), (4, 9), (5, 9), (8, 9)]

XXXIZXIXZX [“YI”]

telescope 10 [(0, 1), (1, 0), (2, 0), (6, 0), (4, 1), (5, 1), (6, 1), (2, 3), (3, 2), (4, 2),
(5, 2), (8, 2), (0, 4), (3, 5), (5, 4), (6, 4), (0, 6), (1, 6), (2, 6), (4, 6),
(0, 7), (1, 7), (0, 8), (5, 8), (7, 8), (9, 7)]

YXYXZZIZIZ [“ZY”]
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estimate that circuits produced by our method with fewer
than 13 qubits can handle noise even in worst-case
entanglement scenarios. Because all datasets in this study
have no more than 10 features, our results are moder-
ately reliable for current quantum devices. Additionally,
our fitness function design optimizes for smaller circuits,
further increasing the resilience of NISQ devices. More
detailed estimations and further discussions on this topic
are provided in the supporting information Appendix D.

6 | CONCLUSIONS AND
FUTURE WORKS

This study applied a metaheuristic optimization scheme
to produce quantum feature maps with flexible entangle-
ment arrangements. Using various actual and artificial
datasets, our proposed method consistently outperformed
other classical, quantum, and quantum-GA baselines.
Compared with the best-performing baselines, our
method achieved improvements ranging from 5.3% to
32.4% for artificial datasets and 1.0% to 17.5% for actual
datasets. This method successfully identifies entangle-
ment patterns that better accommodate data than classi-
cal classifiers and other quantum approaches, such as ZZ
feature maps, entangled-QSVC, QSVC, and maps gener-
ated by Pauli-GA baselines. For artificial datasets, the
proposed method finds entanglement structures similar
to the predefined entanglement graph patterns used in
data construction. In actual datasets, the generated fea-
ture map does not converge toward specific entangle-
ments and can even generate quantum circuits without
entanglement when unnecessary. This indicates the
method’s capability to discover diverse entangled feature
maps tailored to each dataset’s unique characteristics.
However, as the dimensions of the datasets increase, the
performance of this method may degrade when applied
to current NISQ processors. This could be a significant
limitation when dealing with more complex datasets,
such as those involving text and images. Several potential
directions for future research and improvement exist.
Further exploration is necessary to understand why
certain entanglement structures enhance performance
for specific datasets. Additional measures should be
taken to identify the roles of specific entanglements in
various cases. Refining the entanglement styles to
encompass a broader array of options, such as incorporat-
ing higher-order quantum circuit interactions like
N-local alternating entanglement layers, could further
boost performance. Moreover, this optimization frame-
work has the potential for broader applications, extend-
ing beyond the machine-learning domain to optimize
quantum circuits in other fields.
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