Acknowledgement
This work was funded by PT Lancs Arche Consumma (MOU.003/CIT/XI/2022) and PT Astra International TBK - TSO (MOU.002/CIT/XI/2022).
References
- J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2 (2018), 79. https://doi.org/10.22331/q-2018-08-06-79
- F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell, and B. Burkett, Quantum supremacy using a programmable superconducting processor, Nature 574 (2019), no. 7779, 505-510. https://doi.org/10.1038/s41586-019-1666-5
- S. Bravyi, D. Gosset, R. Konig, and M. Tomamichel, Quantum advantage with noisy shallow circuits, Nature Phys. 16 (2020), no. 10, 1040-1045. https://doi.org/10.1038/s41567-020-0948-z
- M. R. Perelshtein, A. I. Pakhomchik, A. A. Melnikov, M. Podobrii, A. Termanova, I. Kreidich, B. Nuriev, S. Iudin, C. W. Mansell, and V. M. Vinokur, NISQ-compatible approximate quantum algorithm for unconstrained and constrained discrete optimization, Quantum 7 (2023), 1186. https://doi.org/10.22331/q-2023-11-21-1186
- Y. Wang and J. Liu, Quantum machine learning: from NISQ to fault tolerance, arXiv preprint, 2024. https://doi.org/10.48550/arXiv.2401.11351
- Y. Zhang and Q. Ni, Recent advances in quantum machine learning, Quantum Eng. 2 (2020), no. 1, e34.
- I. Cong, S. Choi, and M. D. Lukin, Quantum convolutional neural networks, Nat. Phys. 15 (2019), no. 12, 1273-1278.
- Y. Dang, N. Jiang, H. Hu, Z. Ji, and W. Zhang, Image classification based on quantum k-nearest-neighbor algorithm, Quantum Inf. Process. 17 (2018), 1-18.
- M. J. Bremner, A. Montanaro, and D. J. Shepherd, Achieving quantum supremacy with sparse and noisy commuting quantum computations, Quantum 1 (2017), 8.
- K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Quantum circuit learning, Phys. Rev. A 98 (2018), no. 3, 32309.
- M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, Circuitcentric quantum classifiers, Phys. Rev. A 101 (2020), no. 3, 32308.
- C. Cortes and V. N. Vapnik, Support-vector networks, Mach. Learn. 20 (2004), 273-297.
- S. Theodoridis and K. Koutroumbas, Pattern recognition, Elsevier, 2006.
- V. Havlicek, A. D. Corcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning with quantum-enhanced feature spaces, Nature 567 (2019), no. 7747, 209-212.
- M. Schuld and N. Killoran, Quantum machine learning in feature Hilbert spaces, Phys. Rev. Lett. 122 (2019), no. 4, 40504.
- S. Jerbi, L. J. Fiderer, H. Poulsen Nautrup, J. M. Kubler, H. J. Briegel, and V. Dunjko, Quantum machine learning beyond kernel methods, Nature Commun. 14 (2023), no. 1, 517. https://doi.org/10.1038/s41467-023-36159-y
- M. Schuld, Supervised quantum machine learning models are kernel methods, arXiv preprint, 2021. https://doi.org/10.48550/arXiv.2101.11020
- S. Altares-Lopez, J. J. Garcia-Ripoll, and A. Ribeiro, AutoQML: Automatic generation and training of robust quantum-inspired classifiers by using genetic algorithms on grayscale images, arXiv preprint, 2022. https://doi.org/10.48550/arXiv.2208.13246
- Y. Tjandra and H. Sugiarto, An evolutionary algorithm design for Pauli-based quantum kernel classification, (Joint Workshops 49th Int. Conf. Very Large Data Bases - Int. Workshop Quantum Data Sci. Manag., Cancouver, Canada), 2023.
- L. Davis, Handbook of genetic algorithms, 1991.
- H. Chiroma, S. Abdulkareem, A. Abubakar, and T. Herawan, Neural networks optimization through genetic algorithm searches: a review, Appl. Math. Inf. Sci 11 (2017), no. 6, 1543-1564.
- J. Kratica, V. Kovacevic-Vujcic, and M. Cangalovic, Computing the metric dimension of graphs by genetic algorithms, Computat. Optim. Applicat. 44 (2009), no. 2, 343-361.
- T. Hubregtsen, J. Pichlmeier, P. Stecher, and K. Bertels, Evaluation of parameterized quantum circuits: on the relation between classification accuracy, expressibility, and entangling capability, Quantum Mach. Intell. 3 (2021), no. 1, 9. https://doi.org/10.1007/s42484-021-00038-w
- S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms, Adv. Quantum Technol. 2 (2019), no. 12, 1900070. https://doi.org/10.1002/qute.201900070
- S. Altares-Lopez, A. Ribeiro, and J. J. Garcia-Ripoll, Automatic design of quantum feature maps, Quantum Sci. Technol. 6 (2021), no. 4, 45015.
- B.-S. Chen and J.-L. Chern, Genetically auto-generated quantum feature maps, arXiv preprint, 2022.
- N. Nguyen and K.-C. Chen, Quantum embedding search for quantum machine learning, IEEE Access 10 (2022), 41444-41456.
- E. Torabian and R. V. Krems, Compositional optimization of quantum circuits for quantum kernels of support vector machines, Phys. Rev. Res. 5 (2023), no. 1, 13211.
- M. Incudini, F. Martini, and A. Di Pierro, Structure learning of quantum embeddings, arXiv preprint, 2022. https://doi.org/10.48550/arXiv.2209.11144
- L. Bai, L. Cui, Y. Wang, M. Li, J. Li, S. Y. Philip, and E. R. Hancock, HAQJSK: hierarchical-aligned quantum Jensen-Shannon kernels for graph classification, IEEE Trans. Knowl. Data Eng. (2024).
- L. Cui, M. Li, L. Bai, Y. Wang, J. Li, Y. Wang, Z. Li, Y. Chen, and E. R. Hancock, QBER: quantum-based entropic representations for un-attributed graphs, Pattern Recogn. 145 (2024), 109877. https://doi.org/10.1016/j.patcog.2023.109877
- Q. Meng, J. Zhang, Z. Li, M. Li, and L. Cui, Entangled quantum neural network, inQuantum computing: a shift from bits to qubits, Springer, 2023, pp. 245-262.
- Y. Suzuki, H. Yano, Q. Gao, S. Uno, T. Tanaka, M. Akiyama, and N. Yamamoto, Analysis and synthesis of feature map for kernel-based quantum classifier, Quantum Mach. Intell. 2 (2020), 1-9.
- M. Grossi, N. Ibrahim, V. Radescu, R. Loredo, K. Voigt, C. Von Altrock, and A. Rudnik, Mixed quantum-classical method for fraud detection with quantum feature selection, IEEE Trans. Quantum Eng. 3 (2022), 1-12.
- J. Mancilla and C. Pere, A preprocessing perspective for quantum machine learning classification advantage in finance using nisq algorithms, Entropy 24 (2022), no. 11, 1656.
- M. Feurer, J. N. Van Rijn, A. Kadra, P. Gijsbers, N. Mallik, S. Ravi, A. Muller, J. Vanschoren, and F. Hutter, Openml-python: an extensible python api for openml, J. Mach. Learn. Res. 22 (2021), no. 1, 4573-4577.
- R. A. Fisher, The use of multiple measurements in taxonomic problems, Ann. Eugen. 7 (1936), no. 2, 179-188.
- I.-C. Yeh, K.-J. Yang, and T.-M. Ting, Knowledge discovery on rfm model using Bernoulli sequence, Expert Syst. Appl. 36 (2009), no. 3, 5866-5871.
- V. Greaney and T. Kellaghan, Equality of opportunity in irish schools: a longitudinal study of 500 students, Educational Company, 1984.
- J. D. Kalbfleisch and R. L. Prentice, The statistical analysis of failure time data, John Wiley & Sons, 2011.
- B. V. Ramana, M. S. P. Babu, and N. B. Venkateswarlu, A critical comparative study of liver patients from USA and India: an exploratory analysis, Int. J. Comput. Sci. Issues 9 (2012), no. 3, 506-516.
- R. K. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jirina, J. Klaschka, E. Kotrc, P. Savicky, S. Towers, and A. Vaiciulis, Methods for multidimensional event classification: a case study using images from a Cherenkov gamma-ray telescope, Nucl. Instrum. Methods Phys. Res. Sect. A: Accelerators, Spectrometers, Detectors and Assoc. Equip. 516 (2004), no. 2-3, 511-528.
- Qiskit contributors, Qiskit: an open-source framework for quantum computing, 2023.
- D. Sharma, P. Singh, and A. Kumar, The role of entanglement for enhancing the efficiency of quantum kernels towards classification, Phys. A: Stat. Mechan. Applicat. 625 (2023), 128938. https://doi.org/10.1016/j.physa.2023.128938
- D. A. Shoieb, A. Younes, S. M. Youssef, and K. M. Fathalla, HQMC-CPC: a hybrid quantum multiclass cardiac pathologies classification integrating a modified hardware efficient ansatz, IEEE Access 12 (2024), 18295-18314.
- Z. Li, P. Liu, P. Zhao, Z. Mi, H. Xu, X. Liang, T. Su, W. Sun, G. Xue, J. N. Zhang, and W. Liu, Error per single-qubit gate below 10-4 in a superconducting qubit, npj Quantum Inform. 9 (2023), no. 1, 111. https://doi.org/10.1038/s41534-023-00781-x
- Suppressing quantum errors by scaling a surface code logical qubit, Nature 614 (2023), no. 7949, 676-681.
- S. Brandhofer, S. Devitt, T. Wellens, and I. Polian, Special session: noisy intermediate-scale quantum (NISQ) computers-how they work, how they fail, how to test them? 2021 IEEE 39th VLSI Test Symposium (VTS), San Diego, CA, USA, 2021, pp. 1-10. https://doi.org/10.1109/VTS50974.2021.9441047
- G. Gonzalez-Garcia, R. Trivedi, and J. I. Cirac, Error propagation in NISQ devices for solving classical optimization problems, PRX Quantum 3 (2022), no. 4, 40326. https://doi.org/10.1103/PRXQuantum.3.040326
- F. Leymann and J. Barzen, The bitter truth about gate-based quantum algorithms in the NISQ era, Quantum Sci. Technol. 5 (2020), no. 4, 44007. https://doi.org/10.1088/2058-9565/abae7d